Evaluating Software Design Patterns

T the 0Gang of Four patternsimplementedin Java 6

Masterds ThesisComputer Science

Gunni Rode

August 2007

Department of Computer Science
Faculty of Science
University of Copenhagen

Denmark

EVALUATING SOFTWARE DESIGN PATTERNS al {¢owQ{ ¢l 9{L{
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

Dedicatedto

Filur & Lurifax

ofor keeping me company

Theodor Rode von Essen

ofor keeping the smile on my face

But first, and foremost, dedicated to

Marina Rode von Essen

ofor keeping me!

Gunni Rodea http://www. rode.dk/thesis |

EVALUATING SOFTWARE DESIGN PATTERNS al {¢owQ{ ¢l 9{L{
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

Preface

Life iswhat happens to yowhile
you're busy making other plans
i iJohn Lennon

This thesis concludes a owork in progresso that has lasted over a decade d my Ma s t eDedieg in Computer
Sience; finally ! | began studying in 1995, but was fortunate enough to get a very nice job within the first two
years; a job that | hold and treasure to this day. Combined with life in general, t his naturally slowed things

down, but almost never to a complete halt, often because of friendly reminders from my family and friends.

Thesisi iFormally, the workloa d of the project this thesis represents is 30 ECTS and it was completed under
the supervision of Professor Eric Jul at the University of Copenhagen, Denmark . The work carried out was done
from late 2006 to August 2007, and the defence was held on November 2", 2007. This public version contains
only small changes from the actual thesis handed in for grading , and the presentation delivered at the oral

defence is available as [Rode0]. During this period, many things happened in my life , good and bad. First and
foremost, | became a father to a wonderful son named Theodor Rode von Essenan eyef opener, to say the
least, concerning such concepts as time, family, and especially oneself. Unfortunately, m y family and | also
experienced several deaths in the near family, especially that of my beloved father, Henning Rode, who died
only a week before my defence. Secondarily, the company where | work was sold causing quite a few changes in
my everyday life. | studied for the Java 5 certifi cation, but never got around to take the exam (wonder why?).

My wife and | had our kitchen completely renovated over a strenuous period of almost six months. And then
some... I All these things one way or another influenced this thesis, butt he reality is also that | at times was not
focused enough. | did not manage to state precise and tangible goals for the work to be performed, causing me

to pursue and writing about many different areas of interest related to OO and design patterns .

Originally, t his project was intended to evaluate different aspects related to the twofiway connection between

the 0 Gang of F oswanddhe pragrammingranguages usedfor implementation . Much work was put into

formulating several evaluation criteria in a consistent format , albeit in broad terms. Simplified e xamples of

criteria include how the use of natural language affects the applicability of pattern X in language Y, or vice

versa, if the naming of pattern participants is consistent and independent of specific OO programming

paradigms; or how easy is it to implement pattern X in language Y ?Java 6, and possibly other languages, should

act as the catalyst s for the evaluations , but the criteria spawned more questions than answers because they

were more theoretical than practical in nature. However, the intent had always been to make this a practical

project with emphasis on the practical application of design patterns, but the evaluation approach seemed to

collide with this. Hence, when | discovered several articles on pattern application utilising specific language

features that caused osimplerd implementations, or even pattern componentization s, in various languages, the

idea arose to compare such findings with Java 6 implementations oft he 0 Gang of sHalsoredlisedatt er n
that the 0Gang of Fourdé patterns should be fesetbhdcausethed as a
patterns were published as a complete pattern system with many internal relationships and similarities. The

work performed is still an evaluation , but focus thus moved from several forms of evaluation of a handful of the

Gunni Rodea http://www. rode.dk/thesis 1]

EVALUATING SOFTWARE DESIGN PATTERNS al {¢owQ{ ¢l 9{L{
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

0Gang of Four 0 pandise@ad practicdl iovestigatiore of how Java 6 paradigms can influence the
application of allthe 6 Ga n g o fattéfrs.uThefinal work description for the work performed is approved by

Eric Jul and is available as [Rode07q].

Thesis Websiteé iThis thesis has a dedicated website at http://www.rode.dk/thesis , which offers this thesis
in a slightly modified online HTML version; the presentation given at the oral defence; the developed source

code; generated JavaDog etc.

Acknowledgements il can honestly say, without a doubt, that | would never have been able to complete my
degree, and especially this thesis, without the love and continuous support from my beloved wife, Marina.
Though alien to computer science, she also offered much appreciated assistance with prooffireading and layout.

Jonna von Essen also helped with last minute, but very effective, proof freading.

My workplace and colleagues also made this thesis possible as they graciously allowed me to take time off to
complete it, thereby burdening themselves with even more work. Several people provided invaluable critique,
some of which | unwisely ignored J . Morten Wolf assisted with harsh, but earnest proof fireading. Jesper Steen
Maller provided much appreciated input and Erik W. Rasmussendid as well. Furthermore, Brian Grunnet lent me
practically all the books cited in this thes is; some of them have since become mine due to coffee stains and

undeniable traces of claws from a cat.

Finally, | wish to thank Eric Jul for allowing me to undertake a somewhat unorthodox but tangible and handsfion
thesis that is actually highly relevant to me. | suspect this is also the case for my cofiworkers and the likes.
Ericd6s pragmatic approach to this project, even after | c h:

discussions, helped me overcome seemingly overwhelming obstacles to eventually complete this thesis.

Prerequisites iThe reader is assumed to have an understanding of computer science corresponding to at least
graduate level. Familiarity with Object fiOrientation and Java is expected, but infi depth knowledge of pattern
theory is not required as this thesis presents an introduction to pattern theory and how it relates to OO .
However, practical experience with software design patterns and especially t he o0 Gang of Four é desigr

is a definite plus. A sense of humaur is not a bad thing either.

Keywordsi iDesign Patterns; Gang of Four; Java 6; Objectfi Orientation; LanguageFeatures

Gunni Rodea http://www. rode.dk/thesis 1]

http://www.rode.dk/thesis

EVALUATING SOFTWARE DESIGN PATTERNS al {¢owof
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

Colophon

This thesis is written in UK English, set with Trebuchet MS, 9pt, using a line spacing of 1.5. Program listings are
illustrated with Courier New, 6pt, and syntax highlighted . Program code inlined in normal text is written using
Courier New, 10pt, i n grey. Quotations are written using Times New Roman, 9pt, in italics; bold text within
quotations identifies the author being quoted, or emphasises issues deemeal important by the undersigned.
Important terms or names, such as design pattern names, classifications, concepts, and type names are

capitalised, as the Factory Method pattern or the Equilibrium property pertaining to pattern quality

References are alphabetised by the surname of the primary author, followed by the year of publication if

possible. Citations are written in square brackets, separated by semicolon in alphabetical order , including the
name and possible year with two digits only, for example [Alexander77; LeaO(Q. Page, table, figure, or item
references are prefixed with p, t, f, and i, respectively , for example [Lea00, i.12] for the twelfth FAQ item
presented there . Pagereferences are supplied if possible and only if the reference in question has explicit page
numbers, for example [Gamma95 p.6]. An item will be referenced the first time encountered in the context at

hand, and only again if the context warrants it.

Figures, tables, program listings, and examples are enumerated for easy reference. The enumeration format is
the chapter number followed by a dot and a sequence number local to the chapter, e.g. 2.1, 2.2, 3.1, 4.1, 4.2,
4.3, etc. Referencesto chapters, sections, figures, tables, program listings , and examples are set in boldfiface,
as figure 2.1. Crosgireferences spanning several pages will generally be followed by the page number to the

reference in question, as figure 2.1 on page 13.

Gunni Rodea http://www. rode.dk/thesis [\

¢19{L{

EVALUATING SOFTWARE DESIGN PATTERNS al {¢owQ{ ¢l 9{L{
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

Abstract

I'n this project, we perform an evaluation of t hand 0 Gang 0
experimental point of view using Java 6 as the implementation language. We investigate how Java 6 language

features af f ect the application of the o0Gang of Fourdé design [
investigation focuses on how the practical use of language features can affect the design pattern

implementations , not how the features are constructed . To perform a reasonably structured and verifiable
evaluation, w e define ageneraleval uati on approach on how to evalwuate the 0
language as a catalyst. The premise is to implement all pattern functionality described in Implementation and

Sample Code elements in the 0Gaasggthesefare the eleménts phattptimanlyn descr i p

target the practical implementation , and evaluate the outcome .

Using the defined approach, we i mpl e meantinedigate o8 afrcge of Four 6
language features (types, generics, closures, etc.), reflection (class literals, dynamic proxies, annotations,

etc.), and special language mechanisms (synchronisation, serialization, cloning, etc .). The individual pattern

evaluations show that with a few exceptions, all pattern functionality —described in the Implementation and

Sample Code elements, including Meta fiinformation, can be implemented or simulated in Java 6 using the

investigated features. The comparative evaluation shows that Javads mixt
very well suited to express the o0Gang of Four Gavipuemt t er n f ur
patterns benefit from dynamic usage, while the static features make the implementations more robust , possibly

reusable, and clarify pattern intent . The implementation s furthermore provide novel , or at least alternative,

approaches on how to implem ent Abstract Factory, Factory Method, Memento, Observer, Proxy, Singleton, and

State in Java 6.

Gunni Rodea http://www. rode.dk/thesis \%

EVALUATING SOFTWARE DESIGN PATTERNS al {¢owQ{ ¢l 9{L{
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

Resumé

Dette projekt omhandler en evaluering a f Gaag of Fourd d emgngirene (engelsk: design patterns) ud fra en

praktisk og eksperimentel tilgang, hvor Ja va 6 er programmeringssproget, der bruges til implementeringen . Vi

undersgger, hvordan sprogegenskaberi Java 6 p=-virker anvendel s d&ang ofgroud mpl ement
designmgnstrene, individuelt og sammenholdt for alle mgnstrene . Evalueringen fokuserer pa, hvordan den

praktiske brug af konstruktioner i Java kan pavirke implementeringen af manstrene, ikke hvordan

konstruktionerne selv er konstrueret. For at udfare en rimelig struktureret og validerbar evaluering, definerer vi

en generel fremgangsmade tilateva | u e®aag obFoud mRnstrene ved pograngmeringsspopg gi vent
som katalysator. Udgangspunktet er, at al mgnsterf unkt i onal i t e tmpldmerdakon & v ® §amfde 06

Coded el eme nt er nbeskrivelsenm@ skal forsgges implementeret o g resultatet derefter analysere s, idet

disse er de primzere elementer med fokus pa den praktiske anvendelse.

Vi i mpl e m&ang efrFoud omRBnstrene inden for rammerne af den def |
undersgger brugen af grundlaeggende sprogegenskaber (typer, parameteriserede typer, etc.), refl eksion

(klasser, dynamiske proxier, annoteringer, etc.), samt specielle sprogmekanismer (synkronisering, serialisering,

kloning, etc.). De individuelle evalueringer af mgnstrene viser , at al mgnsterfunktionalitet f r #&mplémentation 6

0g Satple Codd® el ement ernne kan i mpl ementeres el l er simul eres i
konstruktioner med fa undtagelser. Den sammenlignende evaluering viser, at Javas blanding af statiske og

dynamiske egenskaber er endog meget god til at udtrykke funktionalitet en beskrevet i 6Gang of Fourd

mgnstren e . Credtional 6 , me n Behawouraldd6 mB n dragerdordel af de dynamiske egenskaber, mens

statiske egenskaber medvirker til , at implementeringerne bliver mere robuste, muligvis genbrugelige, og

tydeliggr mgnsterfunktionalitet . Endeligt frembringer evalu eringen nye, eller i det mindste alternative, tilgange

til at i mp Abstnag Ratt@ayoe oFattory Methodd, 6Mementod, 6Observerd, 6 P r o x8irgletond, og

OStated i Java 6.

Gunni Rodea http://www. rode.dk/thesis VI

EVALUATING SOFTWARE DESIGN PATTERNS al {¢owof
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

Table of Contents

PrefaCe ..ot s e aerree s Il
(0] (o] o] 2T o v
Y 0153 = Lo PRSP \%
RESUME ..o e s e \
Table Of CONENES ..o s eeree e e VI
LISt Of FIQUIES .oviiiiiiiiiiiiiiiciiiiiit et rieeens aeveee s aeneeeans Xl
LISt Of TADIES oo e e eenreea Xl
Program LIStINGS ..o ciiiivcviiiis et eeeeeee e, e Xl
I 101 o o 111 1T o 1
1.1, MOUVALION cviiiiiiiciiiciiiceviie et e eeesieee 1
120 GOAIS..ccciiiiiiiiiiiiciiiis e e e
121 DEMAICALIONSvvvviieiiiiiiiiie it eeeeeee e eeeeeaea e
1.3, THESIS SUMMAIY....ciiiiiiiiiiiiiiiiiiiiiiies eeeeeeeeeeiriereee aeeeeeae e aees 5
1.3.1. PartOne fi Theory and Background............ccccciiiiiiiicces i
1.3.2. Part TWo fi EVAlUALION.....cccceiiiiiiiiciiiiiis e e
1.3.3. WOrk Performedccoooiiiiiiiiiiiiiiee et eeeeeee e 10
2. Object i Oriented DeVEIOPMENt ...oooiiieeiiiies e eeraeae 12
2.1, ObjectAOriented CONCEPLScocccvvivieiiiiiiiieeiiiiis vt rereee s 13
2.1 1. CONCEPLS ..ottt eiiiriiiiiiies et eeeeese e .. 15
2120 TREMES coiiiiiiiiiii i iiiiiiiiies s e ... 18
2.2. ObjectfiOriented MethOUSccoccviiviiiiiiiis e e 19
2.2 1. PABINS oo eeeiiiiiiiiiiiis e eeeeeae e e e e e e e ... 19
2.3. Unified Modelling LANQUAGEccccccuiiiiiiiiiiiiiiiies aeeeieeriiiiiiiiinieeeeeees aeeeaaaa e 20
231, PaAllerNS..ccccciiiiiiiiiiiciiiiiie s e ... 20
2.4. ObjectiOriented ANAIYSIScoooiiiiiiiiiiiiiiict e aeeeeea e ————— 21
2.5, ObjectNOriented DeSION ..ccccoveeeiiiiiiiiiiiiiciiiiies ettt eeeeeeea e e 22
251, PaAllerNS...cccciiiiiiiiiiciiiiiis s e .. 23
2.6. Objectii Oriented Programmingcecceeeeiieiiiiaiiiiiiis rviiiiiiiiereeeee e e e e e e e e e areaiaeeraeeee 27
2.6.1. Objectii Oriented Programming LANQUAGEcceveiiiiiiiaeiaiiiiiiiis eeiiieeieeeeeeaeaa e 28
2.6.2. PAlterNS......ccciiiiiiiiiiiiiiiiies e e .. 29
2.7, SUMMAIY cooiiiiiiiiiiiiiiiiiie e eeees eeeeeeeeeteeeiie e e e e es arreeeeeeeeeen e ees aaeaaeeaeees 30

Gunni Rodea http://www. rode.dk/thesis VIl

EVALUATING SOFTWARE DESIGN PATTERNS al {¢owQ{ ¢l 9{L{
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

3. PallernNs .o i e e 32
3.1, Christopher AleXandEr......ccvvvviiiiiiiiiiiiiiiiis vt e 32
3.2, SOftWAre PatterNSc.coiiiiiii e et e .. 35
3.3, Pattern QUAlITIEScoovviiieciiicii s s e ... 36
3.4, PatterN FOICES...ciiiiiii it ettt ettt et aaean 38
3.5, PatternN ElIBMENTS ... iieiiieeeieeee e e ... 39

351. oGang of Four.0.. .Fo.rmal e e 40
3.6, Pattern FOrmaliSMc.oovvviiiiiiiiiiiis et e .42
T A = - 1 (=14 W 0] | [=Yx 1 To] o T 43
371. 0Gang of Four ¢ .Rat.t.er.n..Syst.eM . 44
3.8, Pattern EVOIULION ..ocooiiiiiieiiciiciiee s ettt e .. 47
3.8 1. MINING i e e e 47
3.8.2. ANt PAEINS c.cvviiiiie it e e 48
3.8.3. ProtOo PAtlerNScooeiviiiiiiiiiiiiiiiiciies ittt rrereee e 49
3.8.4. Piecemeal GrOWtN......cooiiiiiiii it e e 49
3.9, Pattern APPlICAtION ..o e e e aaae s 50
G N I U L= Vo [PP PO PPN 50
3.9.2. UNAerstandingcceevvviiiiiiiiiiiiiiis e e 51
310, SUMMANY oot e nees aeeeee———rr e es aaeeaeeaa 52
4, REIAtEA WOIK ..ovvvviiiiiiiiiiiiiiiiiiiiies eevvvvvvvnriininssee s evveesess——————————————aaaa e 54
4.1, LangQuage SUPPOMt....cccceeiiiiiiiiiiiiiiiiiiiis ettt ree e e e e e e e .. 54
4.1.1. Implementation LEVEl ... e e 55
4.1.2. DISCUSSION.....uiiiiiiiiieeeiiiieeeeiiie ettt ee ettt eeees ereeee e e .56
4.2, DYyNamiC LANQUAGES.......ccooiiiiiiiiiiiiiiies aeeeeeeeessess s aaeeaeaeeaeeaaeaaana————————- 57
4.2.1. Common Lisp and DYlan........cccccvviiiiiiiiiiis e areeaeeeaee 57
4,22, SCNEME ..o iiie e e ... 58
4.3, StaliC LANQUAGES ..vevvviiiiieiiiiiiiiiiiiiiiiiee tetreette e e e e e eeeeeereeaaaaaaaaaaaa e ... 60
R I 0 60
e TN - \ V- N PPNt 60
4.3.3. Java @nd ASPECE.....cccoiiiiiiiiiiiiiiii s e 61
434, EMffel i e e et 63
A4, COMPANSON ccciiiiiiciiiiiiiiiiiiittees eeeeeee e irirrrrreees aaeeeaeeea e ——————————— aaaeaeaas 64
o R - | (1 1 =SS .. 64
L e\ 1 (=] 1 1 TP ... 65
4.5, SUMMAY cooiiiiiiiiiiiie e eeeeiiiiiiis eeeeeiiiieas e e e e e eeeeeenss eeeeeeeeiei e e e anenens aeeeeeseeees 66

Gunni Rodea http://www. rode.dk/thesis Vil

EVALUATING SOFTWARE DESIGN PATTERNS

al {¢owQ{

TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c
5. BEvaluation Approachccccoiiiiiics e e 68
5.1, FOCUS..cciiiiiiiiiiiicc i et e e 68
5.2, DESCHPUON c.evviviiiiiiic i v eeeveee e eeeenaas 70
5.3, EVAluAtion GOAIScooiiiiiiiiiiiiiiiiiiiiis e e .. 70
5.3.1. FEAWUIES ..o iiiiis e e .71
5.4, SUMMANNY ..ot eeeeeeeirrrrrreennees e naes aaeeaaaa 72
6. IMPIEMENTALION ..ooiciiiiiiiiiiis e e .73
B.1. SOfWAIE....cccoiiiiiiiiiiiiiciiiis v e e 73
6.2, MOAEIING ..o e eees eeeeeeee—————————————— aaeaaaaaaa 73
6.3, DESION...tiiiiiiiiiiiii s e e reeees 74
6.4, SOUICE COUC......oiviviiiiiiiiiiiiiiiie e e v 76
6.5, TESHNG..iiiiiiiiiiiii i s e eeeaa—e 78
6.6, SUMMANY ..ot aeeeeeeerrrrrrrennees e es aaeeeea 79
7. Comparative Evaluationcccccciciiiiiiiiiis e e 80
7.1, Language FEAtUIES........ccccccciiiiiiiiiiis eeeeeeeneeerrrrrrrriee eeeeeeeaa e . 80
7.1.1. Core Language FEAUIES.........ccccvveiiiiiiiiiiiiiis ettt e 81
7.1.2. REfleCtion ..o e 101
7.1.3. Special Language MechaniSmMS.........cccoocveiiiiiiiiiccss vt eeees 117
7.1.4. Feature ODSErvationSccccciveiiiiiiiiiis e e 125
7.2. Pattern RelationShiPS ... e e 127
7.3. Implementation LEVEl ..ot e e 131
T4, SUMMANY oot aeeeereesrrrrrrrrrrerees aeeeenae———rrnees aaeaaaaa 133
8. Detailed EValuationcccccvviiiiiiiiiiies s e 136
8.1. Cre@tional PAMterNSccoiiiiiiiiiiiiiiies et eeeer e 136
8.1.1. ADBSHACt FACIONY ..oooviiiiiiiiiiiiiiiiiiis et e 136
8.1.2. BUIEr ovviiiiiiiit e e . 138
8.1.3. FacCtory MethOdcccoiviiiiiiiiiiiiiiics s e 140
8.1.4. PrOtOIYPE .cooiiiiiiiiiicciiiiiis et eeeeeeaa e 141
8.1.5. SINGIEION...ccciiiiiii s e eeeeeee e ——————— .143
8.2, SHUCIUral PAtternNS ...oociiiiiiiiiiiiiiiiiis e e 145
8.2.1. AAAPLEN .ooviiiiiiiiiiiiiis e e s .. 145
8.2.2. BrHUQE eieiiiiiiiiiiiiiiiiiit s e .. 146
8.2.3. COMPOSILE c..vvviiieiiiiiiiii et ettt eeeer e 148
8.2.4. DECOIALON ...coeiiiiiiiiicciiiiiiiis ettt eeeeeea e 150
8.2.5. FACAUE.....oi it e e .. 151
8.2.6. FIYWEIGht oot s eeeeeee e ———— 153
S T R 0)Y/ POt 154
Gunni Rodea http://www. rode.dk/thesis IX

¢19{L{

EVALUATING SOFTWARE DESIGN PATTERNS a!l {¢co9wOf

TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

8.3. Behavioural PAtternsccccccociiiiiiiiicins e e 156
8.3.1. Chain of ReSponSIbIlityccccvviiiiiiiiiiiiiicis e eevereee, 156

8.3.2. COMMANG....cciiiiiiiiiiiie s e e 158

8.3.3. INLEIPIeIEr oo ciiiiiiiiiiiis s eeeeeiee e e e e eaeaan 160

8.3.4. HErAlOr ...ccooviiiiiiiiiiiiiiiiiis e e .. 163

8.3.5. MEIALON oo e e .164

8.3.6. MEMENIO.....coiiiiiiiicciis e e .165

8.3.7. ODBSEIVEI ..ottt e e .167

8.3.8. SHALE oot s e eeees 170

8.3.9. SHAEOY....oiiiiiiiiiiiiiiiiiiciiiiiis s e 172

8.3.10. Template Method.......cccciiiiiiiiiiiiiie e e 173

S0 04 0 SV 71 (o) PP UUUPRRRR ... 175

8.4, SUMMANY ..o eeeeeeeeirrrrrrrrrerees aeeeeeee———nees aeeaaaea 178

9. Evaluation CONCIUSIONSccoviviiiiiiiiiiiiiiis e enees eeerreesnreee e 179
9.1. Implementation COMPIANCEceevviiiiiiiiiiiiiiies e reee e 179
9.2, Language FEAtUIES.........cccccciiiiiiiiiiiis eeeeeeeeeeerrrree eeeeeeeaa e 180

LS N o 1o 1 T | PR 180
9.3.1. Abstract Factory and Factory Methodcccocviiiiiiiiiiies e 180

9.3.2. MEMENIO....cciiiiiiiiiiccciiiies et eereee e .181

9.3.3. ODBSEIVE .coiiiiiiiiiiis e e .182

9.3.4. ProxXy and Statl......ccccccciiiiiiiiiiiiiiics s eeeere e 184

9.3.5. SINGIEON.....ciiiiiiiiiiiiiiis e e .185

9.4, Evaluation APProachccccccuuiiiiiiiiiiiiiiiis e e 186

10. CONCIUSION ooiiiiiiiiiiiciiicriiies et e e 189
10.1. PEISPECLVE .oooviiiiiiiiiiiiee i ettt e e 189
10.2. RESUIS...ccoiiiiiiiiiiiciiiiiis e e e 189
10.3. FULUIE WOIK oo et e e 191
10.4. Final REMAIKS.....cciiiiiiiiiiiiiiiiiies ettt e s 192
BiblOGrapny ..o e e 193
Gunni Rodea http://www. rode.dk/thesis X

¢19{L{

EVALUATING SOFTWARE DESIGN PATTERNS al {¢owQ{ ¢l 9{L{
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

List of Figures

Figure 2.1 A OO development life ficycle and Patternsccccccccceeeiiiiiiiiiiies e .. 13
Figure 6.1 fi Primary MOdel ClaSSES......cccoviiiiiiiiiiiiiiiiics e rees e 76
Figure 8.1 fi Abstract Factory UML Class diagram..........ccccoeiiiiiiiiiiiiiies eveeeeeeeeeee e aveeeeas 137
Figure 8.2 A Builder UML Class diagram........coooviiiiiiiiiiiiiiiies eveeeeeeeeeeeeeeriiiiiiiee aeeeaaaaaaaaaaaaa 139
Figure 8.3 fi Factory Method UML Class diagram.......ccccccocvveeeiiiiiiies eeevviiieeeeeniieee e eveeeanns 140
Figure 8.4 fi Prototype UML Class diagram......ccccccvviiiiiieiiiiiies eveeeeiiiiee e eiieee e e eeeeeeesnnnees 142
Figure 8.5 fi Singleton UML Class diagram.......ccccceiiiiiiiiiiiiiies e niireee e rreeee s s 143
Figure 8.6 fi Adapter UML Class diagram.......ccccccveeeeiiiiiiiis evvviieeeesniiie e e nineees aeeeaneieeeeeaanns 145
Figure 8.7 fi Bridge UML Class diagram......ccccccocviiieiiiiiiies veeviiiiieeeeeniiee e e e s eeeeeasnieieeeesans 147
Figure 8.8 i Composite UML Class diagram.......cccccvcviiiieiiiiiies v einree e ereeee s 149
Figure 8.9 fi Decorator UML Class diagram........cccccvviviieiiiiiies eveeeiiiiiee e nieeee e ereeeeesnnees 151
Figure 8.10 fi Facade UML Class diagram........ccccccveeiiiiiiieeniis ieeeeesiiiiee e snineneees avviieeeeeesannees 152
Figure 8.11 fi Flyweight UML Class di@gram......ccccovviiiiiiiiiiiiiis et nirieee e eveeennineeeas 153
Figure 8.12 fi Proxy UML Class diagram........cccccvcvveeiiiiiiies evvriiiiee e sniiieeeesnieees aaeeaniieeeessnnes 155
Figure 8.13 i Chain of Responsibility UML Class diagram..........cccooiiiiiiiiiiiiiies e 157
Figure 8.14 i Command UML Class diagram......cccccecvvviiiiiiiiiices et nirieee e veeennineeeas 159
Figure 8.15 i Interpreter UML Class diagramccccccccciiiiiiiiiiis viiiiiiiiiieeeeeee e e e e e eees v 161
Figure 8.16 i Iterator UML Class diagramccccociciiiiiiiiiiiiiis e iiiiiiniiieee aeeeeeeaaaaaan 163
Figure 8.17 i Memento UML Class diagram.......cccccuviviiiiiiiiiiies eveeeriiiiice e e veeeeennnnes 166
Figure 8.18 i Observer UML Class diagram........ccccovvviiiiiiiiiiiiis avveiiiiiiiiiiieiieeneeeeees aeverreiaaens 168
Figure 8.19 i State UML Class diagram.........ccovviiiiiiiiiiiiiies et eeeeeeeaa e e 171
Figure 8.20 fi Strategy UML Class diagram.......ccccccoviiiiiiieiiiiiis e nirnee e eeeee s 173
Figure 8.21 i Template Method UML Class diagram........cccccccvriiiiiiiices eoeeeeeiieeeiiiiiinneeeee e 174
Figure 8.22 A Visitor UML Class diagram.........oooiiiiiiiiiiiiiiiies it eeeeeeaaaaaa e 176

List of Tables

Table2.1 A Ar ms t r 0 MGOBSErUCt ODAAXONOMY ..oovviiiiiiiiiiiiiie s e e e .. 14
Table22 "0 Gang o0f FOULG..CONCEPLT S iiiiiiiiiiiiieeiiiiiee eeeerrer e 15
Table 2.3 fi Pattern taxOnOmyccccciiiiiiiiiiiiiiiiieis eevcccirrirrrre e e e e e e e e eeveer i aaaaas 24
Table 2.4 fi Comparing C++, Smalltalk, and JAVa B........cccccvviiieiiiiiiiiiies e s 28

Gunni Rodea http://www. rode.dk/thesis XI

EVALUATING SOFTWARE DESIGN PATTERNS al {¢owQ{ ¢l 9{L{
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

Table 3.1 i Pattern qUAlItIESccccciiiiiiiiiiis e e e e .37
Table32 io Gang of Four 0 ..pat.t.er.n..format. 41
Table 3.3 i Pattern COlIECIONSvviiiiiiiiiiiiiiisiiiieeiee e e e e e e es e e ae s 43
Table3.4 A0 Gang of Fogystem..p.a.l.l.B.lif.. s e 45
Table 4.1 i Pattern implementation leVelcccociiiiiiiiiics e e 55

Table42 i o0 Gang of Fouro6 patterns..i.n..Comman Li.s.p..and D$3 an

Table43 io Gang of Four o6 patter.ns..i.n..Scheme..+..GLOS. .. 59
Table44 ioGang of Fouro6 patteds.ns..i.n..Java..*..As.pe.ct.J .. 62
Table 6.1 A UML stereotypes and PropPerti€Scccccvveeiiiiiiieeeiiiies eeeeeesiiee e e esineee e e reeeeesanaees 74
Table 6.2 M SOUrce COUE PACKAGESccvreieiiiiiiiieeiiis eereee e e e e s 77

Table71 AUse of Java 6 features in the o0Gang..of..Four 6.8pattern i

Table72 A Pattern relationships in the o0Gang..of..Fouro.12&ttern i m

Table7.3 Al mpl ementation | evel of the aGang..of..Four.d..plBtterns in
Table 8.1 A Abstract Factory partiCiPantsScccocccvvciiiiiiiiies et e 137
Table 8.2 A Builder partiCipantsScccccciiiiiiiiiiiiiiiiis et e 139
Table 8.3 fi Factory Method partiCIpantSccccccccciiiiiiiiiiiis e i 140
Table 8.4 A Prototype partiCiPaNtScccccieiiiiiiiiiiiiiiis e eeeee e 142
Table 8.5 i Singleton PartiCIPANTS ... e e 144

Table 8.6 fi Additional Singleton entities 144
Table 8.7 i Adapter participants 146
Table 8.8 i Bridge participantscccccccvvveeerinnnnen. 148
Table 8.9 i Composite participants 149
Table 8.10 fi Decorator participants 150
Table 8.11 A Facade participantsccccceevrinreeeennn. 152
Table 8.12 i Flyweight partiCipantScoooiiiiiiiiiiiiiiiies e eeeeeaee e ————— 154
Table 8.13 A Proxy partiCipantsccccccoiiiiiiiiiiiiiiies et e 155
Table 8. 14 i Chain of Responsibility partiCipantSccccccciiiiiiiiiiiies e e 157
Table 8.15 fi Additional Chain of Responsibility entitieSccccccciiiiiiiiiis e 158
Table 8.16 i CommMaNdpPartiCiPANntSccccccvviiiiiiiiiiiiiiies e eeeee e 159
Table 8.17 7 Additional Command entiti€Scccccvvieiiiiiiiiiics e e 160
Table 8.18 fi Interpreter partiCiPantScccccciiiiiiiiiiiiiis e aeeaeeae—————— 161
Table 8.19 A Additional Interpreter entitieS occcveiiiiiiiiiiiies e e 162
Table 8.20 i Iterator PartiCiPantScoocccviciiiiiiiiiis e e 164
Table 8.21 i Mediator partiCipaNntScccooiviiiiiiiiiiiiiiiies s e 165
Table 8.22 fi MeMeNto PArtiCIPANTScooeeeeiiiiiiiiiiiiiiiiiiiis ettt e e e e e 166
Table 8.23 fi Observer partiCiPantsccccccciiiiiiiiiiiiiies et e e 169

Gunni Rodea http://www. rode.dk/thesis XIl

EVALUATING SOFTWARE DESIGN PATTERNS a!l {¢co9wOf

TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

Table 8.24 i State PartiCIPANTS ... e e e aaaaeas 170
Table 8.25 fi Strategy PartiCiPaANtScccooviiiiiiiiiiiiiiies e e, 172
Table 8.26 fi Template Method partiCipantSccccceiiiiiiiiiiiiiiies e e 174
Table 8.27 A VISItOr PartiCiPANtScccooiiiiiiiiiiiiiiiiiis ittt e e e e 176
ProgramListings

Listing 7.1 fi Abstract classes in Factory Methodcccccccviiiiiiiiiiicies e e 84
Listing 7.2 fi Interface usage in FIYWeIgNtcccccciiiiiiiiiiiiies e e 84
Listing 7.3 fi Composition as an alternative to abstract classes in lteratorccccceevviiiiices e 85
Listing 7.4 fi Static and dynamic usage of generics in Factory Methodcccccccviviiiies e, 86
Listing 7.5 fi Dynamic usage of generics in Chain of Responsibilityccccccvviiiiiiiiiices i 88
Listing 7.6 fi Inner classes used for adaptation in ODSEIVETcooviiiiieiiiiiiiiis e 90
Listing 7.7 fi Anonymous classes used as concrete strategies in Adapter.......cccccovvvviveeiiiiiies eveeveiieenn. 91
Listing 7.8 fi Enumeration constants as StateS in Stateccccccvcveviiiiiiiiccs e .. 93
Listing 7.9 fi Singletonfiasfi Singlefi Constant idiom used to implement Singletonccccceeeviineeen. 94
Listing 7.10 f try ficatchfifinally idiom used for method combination in Proxyccccccecccivees o 96
Listing 7.11 A Covariant return types for prototypical and composite behaviour in Command 98
Listing 7.12 i Decoration and adaptation required for covariant return types in Builderccccccece... 99
Listing 7.13 A Varargs usage in Template Method..........coooiiiiiiiiiiiiies s e 100
Listing 7.14 £ Class literals in INtErpreter ...ooovveiiiiiiiiiiiies e e 103
Listing 7.15 f Stack trace and identification of class members used for sub ficlassing in Singleton............... 104
Listing 7.16 fi Stack trace and class literals used to identify caller in Mementocccccocvevveveee. o, 106
Listing 7.17 fi Reusable prototypical factories in Abstract Factoryccccoccviiviiiiiiiiies i 108
Listing 7.18 i A reusable reflective factory in Factory Methodcccccccccciiis e 108
Listing 7.19 A Using reflective factories in Abstract Factory 109
Listing 7.20 fi Reflective method invocation in Visitor .110
Listing 7.21 i Dynamic proxies in ProtOtYPeccccccccciiiiiiiiiis it eeeee e e e i 112
Listing 7.22 A Annotations as compiler hints in BUIlAerccccccoiiiiiiiiiiiiiis e .114
Listing 7.23 fi Annotation usage in SINGIEtON ... e e 115
Listing 7.24 f Synchronisation expressing pattern functionality in Bridgecccccccoiiiiiiiiis i 118
Listing 7.25 A Synchronisation in Facade...........ccccovviiiiiiiiccies i aeeeeeeee 119
Listing 7.26 fi Serialization in MEMENTOcooviiiiiiiiiiiiiiiis e eeeeree e 120
Listing 7.27 7 Copyable and cloneable behaviour in Prototypeccccccccciiiiiis e 123
Listing 7.28 fi Dynamic class loading in SINGIetONcoooiiiiiiiiiiiiiies e 124
Gunni Rodea http://www. rode.dk/thesis X

¢19{L{

EVALUATING SOFTWARE DESIGN PATITHRNBODUCTION a! {¢9wO{ ¢1 9{L{

TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

Introduction

Life has been so much easier
sinceScience invented Magic
I iMarge Simpson

In this thesis, we evaluate software design patterns from a programming language and practical point of view in

an Objectii Oriented (OO) environment. We investigate how language paradigms in Java 6 [Gosling0g affect the
application of allthe 0 Gang of F oGamnda93(d&sw i pattefns. The investigation focuses on how the
practical use, not the construction, of language features can affect the design pattern implementations. This
chapter presents the motivation for undertaking this project, as well as the goals we want to achieve. We
outline the work performed during this thesis, both theoretical and practical, and we conclude this introductory

chapter with an extensive summary of the content presented in this thesis.

1.1. Motivation

Designing and developing complex software systems is not, and has never been, an easy task. On the contrary,
the process is often very time consuming and requires interaction between many different people, skills, and
roles, internally and externally. Many, often contradictory, factors must be addressed in the design processand
at diff erent levels, such asthe need for maintainability versus quick delivery, flexibility versus speed , etc. The
domain may offer tools, notations, principles, and methods to guide the development process, but they cannot
shield against bad design decisions made by humans, and they may not even be standardised. For example,
there is a lack of consensus on how to approach OO development, and several OO methods exist, each offering
their take on how to design OO systems. The Unified Modelling Language (UML) [UMLO3 is commonly used to
model the design, wor ds | i ke o0cl assd and lyaodépjed concéptsdand Gamma ec @.mmo n
suggestfavouring object composition over inheritance [Gamma95 p.20]. However, this modus operandi is by no
means a guarantee for good and durable designs. Experience helps, but careful decisions and meticulous work
are always required. Therefore, and worst of all, t he entire process tends to be error prone, not forgetting
costly. The larger and more complex the system is, the worse these factors seem to become at an escalating

rate .

Even the most complex systems are built by using smaller opartso, influencing the overall design directly or
indirectly. A part can be anything from an entire sub fisystem to a specific component, native to the language or
otherwise, that requires the need for a specific design . Such parts may in turn be built using even smaller parts
and so forth and need to communicate to function as a whole. The key to any viable design is to identify the
relevant parts, their functionality , and their interaction , but this is not a trivial matter . The OO approach
attempts to manage the system complexity by abstracting out knowledge and encapsulating it within interacting
objects [WirfsBrock90, p.5] . Hence, a part can be viewed as a single object (or rather its type) or a collection of
interacting objects delivering a specific functionality . If we view a part as a design problem to be solv ed,
regardless of the approach chosen, it is likely that others have already solved a similar problem in a satisfactory

manner. If we can utilise this knowledge , the quality of the system may be improved. One approach to identify

Gunni Rode http://www.rode.dk/thesis Pagel of 197

EVALUATING SOFTWARE DESIGN PATITHRNRODUCTION al {e¢owQ{ ¢19{L{
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

reoccurring design problems and their well fi proven solutions is to use software d esign patterns. A design pattern
is an abstraction of practical experience and empirical knowledge , but it is also a description of the problem it
addresses and a solution to it [Alexander77; Lea93. While the design pattern provides a canonical solution to
the described problem, human interaction and interpretation is required to apply the solution in different
contexts. Software design patterns are commonly associated with, but not limited to, O O environments.
Patterns are uniquely named and written in a consistent format that allows designers, developers, and others to
communicate using a common vocabulary. Related patterns are grouped in collections, or ideally languages.
Design patterns can facilitat e the entire design and development process because they express ideas and
solutions founded in experience traditional methodologies cannot . They communicate architectural ideas in a

consistent highfilevel language.

Nevertheless, design patterns must be applied with caution. Design patterns are neither completely static, nor

completely dynamic in nature. To apply a design pattern, a problem similar to the one addressed by the pattern

must have been identified in some context. Patterns are not reusable components, but guidelines on how to

solve a given problem. This is an important fact, but based on our experience, one that is often forgotten in real

life situations. As with any design discipline, t he human factor is important because choices and interpretations

must be made to adapt the pattern to a given situation. On the other hand, the environment or context may

dictate behaviour that must be adhered to , and thus cannot be changed. The solution must be implemented for

each context, perhaps differently and perhaps using different programming languages, but a given environment

may also present standard implementations of a given pattern for easy reuse , depending on the pattern

complexity . Patterns can be misunderstood, misused, not used at all, or convey incorrect information at the

time of writing and/ or at the time of application. While design patterns can lead to sound designs they cannot

offer any guarantees [Vlissides97 i. 5]. The true benefit is only realised if a given collection of design patterns is

used on a regular basisin a specific domain and context. The continued use will motivate a better understanding

of how the patterns work and possibly evolve in the given context . In a practical sense, design patterns that

repeatedly have been applied successfully are in our view equivalent to 0t eac hionBedstorPracti ceso6 f or
domain in question, according to the philosophical approach of f er ed by O Bebased aPund ct i ces o
continuous learning and continua |l improvement (see also [Vlissides97, i.6]). Qua this reasoning, we have used a

number of design patterns extensively in our OOdesigns but have experienced that regular practical usage in a

given context is closely tied to the pro gramming language used to implement a given pattern .

The motivation for this project is to gain a better understanding on how to use design patterns from a practical

point of view in OO environments, specifically how the use of language features can influence the pattern

application. To make this concrete, we investigate t he o0 Gang of Fourdé design patterns
programming language. In our view, odesign patternsé a s a isiodeez a petpful tool. However, t he choice

is not whether or not to use ddesign patternsé in the design process, but which concrete patterns to use, if any .

Design patterns as apractical tool are meaningless unless specific design patterns are known, because otherwise

the knowledge cannot be utilised. A pattern can d escribe anything, but only specific patterns can solve a given

problem. By virtue of ourjob,w e wi sh t o evaluate the 0Gawegpaveoubed seeetalrod patt ern

them extensively, but critically, in the design and development of large and quite complex Internet

Gunni Rode http://www.rode.dk/thesis Page2 of 197

EVALUATING SOFTWARE DESIGN PATITHRNRODUCTION al {e¢owQ{ ¢19{L{
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

applicatons. The o0Gang of Fare warcdllectipra af ttveentynfighree design patterns described in the

dDesi gn P ak[Gammad]pby Bpil@005, the book was in its 32 "™ printing! Thed Gan g o pattéfrosu r 6

describe communicating objects and classes that are customised to solve a general design problem in a

particular context [Gamma95 p.3] in OO environments. The experience gained while working with the se

patterns over the years has shown us that they can be a valuable aid in shaping the design of successful

applications, but we have also noted several issues that warrant a closer look. The 0 Gang of Four 6 patte
well over a decade old, and seem to be targeted primarily for C++ [Stroustrup91] environments with rather

dense and stringent descriptions on how to implement them . We have used them in different environments,

using languagessupporting other, or missing, features compared to those addressed in the pattern descriptions .

We have also experienced problematic issues, such asconcurrency related issues; for example, how thread fi safe

initialisation in the Singleton [Gamma95, p.127] pattern is ensured. Many of these issuesare practical in nature,

and seem related to how design patterns and a given programming language interact. Continuing with the

Singleton example, Java has builtfiin support for synchronisation, which could solve the initialisation problem,

but there are also other ways to solve the problem in Java. Unfortunately, because of time and money, realfilife

projects seldom allow infidepth investigations on such issues. The aim of this project is to remedy this by

of fering a subjective, but compr ehensi vieplementeditJava6.iTen of t he
result of the evaluation will give us a better understanding on how the practical use of certain language features

may affect the evaluated design patterns. Thi s i s relevant as the o06Gang of Fourd6 p
realfilife systems, and so is Java, but Java 6 furthermore offers a range of versatile features that will be

interesting to apply in the pattern implementations. As the evaluation centres on features found in Java 6, most

observations will be relevant for Java o nly. It may be possible that some can be generalised to similar languages.

1.2. Goals

The primary objective of this Master6 S hesis is for the undersigned to obtain a Master 8 egree in Computer

Science from the University of Copenhagen Denmark.

This thesis represents a project with a formal workload of 30 ECTS. The purpose of the project is to evaluate
practical application of t h e 0 Ga n g desifn p&ternsruging Java 6 and present the findings in this thesis.
The premise is to investigate how the use of Java 6 features may affect pattern application . By doing so, we
hope to gain valuable experience that will enable us to understand and use design patterns better i n dfifife a |
s i t u a { niotqust sviden applied in Java , but also in situations where the choice of programming language has

already been made. The work include s theoretical and practical aspects.

The primary objective is achieved , if the project is approved based on this thesis. To fulfil the purpose of the

project, we define the following sub figoalsto be addressedin the project and in this thesis:
I. Theory and Background iPresent an introduction to and a discussion about the theory deemed

necessary to understand topics covered by the evaluation. This will include OO ; patterns in general wit h

focus on software design patterns, especially t he o6 Gang of Four darifidadosioghowpatt er ns

Gunni Rode http://www.rode.dk/thesis Page3 of 197

EVALUATING SOFTWARE DESIGN PATITHRNRODUCTION al {e¢owQ{ ¢19{L{
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

concepts and themes described by Gamma et al. relate to Java 6 ; and a discussion on related work and

topics.

Il. Evaluation Approach iDefine a simple, but reasonably structured approach on how to perform an
evaluation of t he 0Gang of ,Avbererti®e chpieetot language will act as a catalyst for the
evaluation. The approach must describe the overall evaluation set fiup; how to focus the evaluation ;
and how to describe the specific criteria used to perform the various investigations . As the evaluation is
subjective, t his will enable others to judge the premise, execution, and result of the evaluation as well

as perform a similar evaluation using a di fferent language catalyst.

. Implementationi iwithin the realm of the defined approach, implement and evaluate the 6 Gang o f

Fouré desi gsingJaabt er ns

IV. Evaluationi iPresent the evaluation outco me and comment on the findings separately for each

evaluated pattern and by juxtaposing the individual evaluations.

A secondary objective is the intention that this thesis can aid others , especially colleagues at work and likefi
minded, to reflect about software design patterns in general, but in particularin r el ati on to the o0Gang ¢
patterns implemented in Java 6. Whether or not this objective is achieved will not be evaluated, but this thesis

and the implementations will be made publicly available for those interested.

1.2.1. Demarcations

This thesis will not cover:

— An evaluation on the validity of the abstractions the 6 Gang of F osuleséribep k is Assumed
that the patterns represent usable solutions to the problems the y address, and the evaluation
investigates only issues related to practical patte rn application in Java 6 . The pattern abstraction s will

only be commented during the investigations if deemed necessary.
— Aninfidepth description of Java 6 and its features, as the reader is assumed familiar with Java.

— The theory behind the c onstruction of programming languages specifically Java. While it is necessary
to be familiar with language features in order to utilise them in pattern application, it is not necessary
to know how these features are implemented in the language itself. For example, we do not care how
J a v gabbage collector or type system is implemented internally , only about the features they offer to
the user and implementer of the design patterns . Relevant features are only described and discussed

from a practical point of view.

- Aninidepth analysis of Chr i entpatierseand pAttera Yargnades withs thevo r k
field of architecture . In computer science,the 0Gang of Four 60 pecbncepts,msdobui | d on

others, but we only present a quick introduction , primarily based on [Appleton00; Lea93.

Gunni Rode http://www.rode.dk/thesis Paged of 197

EVALUATING SOFTWARE DESIGN PATITHRNRODUCTION al {e¢owQ{ ¢19{L{
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

1.3. ThesisSummary

In this thesis, we present a subjective evaluation of the 6 Gang of Four 6 indpkementgchinJpva6.t er ns

The evaluation centres on how the use of specific language features may affect the pattern application. To

make a reasonably structured evaluation across the different patterns using a given language as the catalyst, we

address issues related to the implementation described by Gamma et al. in the Implementation and Sample

Code elementsinthe 0 Gan g o pattdfrodescriptions. If possible, we provide an example on how equivalent

functionality can be implemented in Java 6, or explain why it cannot. We summarise our findings, and identif y

traits common to several patterns. Additionally, we present a thorough introduction to the background theory

required to understand t lae thé cacepts theyfbuildF any sudh ap @Q deeelopment

and pattern theory. We also discuss several articles relatedto appl i cati on of the 0Gang of F
various different languages, both dynamic and static languages, and where deemed relevant compare the results

to the outcome of this evaluation.

This thesis is divided into two parts , excluding the introducti on and overall conclusion. The first part presents
theory and background (chapters 2 d4). The second part concerns the implementation and practical evaluation
(chapters 5 89). In principle, each part can be read independently, but part one provides a solid foundation on
related topics before the evaluation is undertaken in part two. Most of the theory presented in this thesis can be
found in numerous other places in the literature as well , but we apply a practical viewpoint that focuses on the
0Gang of Four ¢ p a By iecluding, discusding,Jaadvf@cusifg on various aspects of it here, we

maintain an important perspective on points relevant to the evaluation

1.3.1. PartOnet Theoryand Background

This part begins with an introduction to O O development. Focus is on how design patterns, particularly the
0Gang of F osuanddthe ganceptethen express, can aid the process and how they relate to Java 6 .
Pattern theory and the relation to software patterns are described and selected studies on related work are

examined.

Chapter 2i iThe o0Gang of Four 6 ptenstargeting design erobkérassrélaged to p OQ To
understand the inner workings of the 0Gang of Fourd6 patterr
must be understood. Its importance is emphasized by Gamma et al. as the entire first chapter in [Gamma9g is

dedicated to the OO concepts and themes that form the basis of the design patterns presented. Hence, chapter

2 gives an introductory, but focused, presentation to the se issues but goes even further and connects concepts,

themes, Java 6, and usage of design patterns in the overall development life ficycle of OO systems Asexplained

in section 2.1, there is no formal consensus on the concep ts that describe fundamental OO behaviour, but the

themes and concepts described by Gamma et al. seem to be commonly accepted. This is illustrated by

juxtaposing the concepts against a recent survey by Armstrong [Armstrong06] that i nvestigates 239 texts on OO

theory to try to identify the fundamental concepts inherent to OO. Because of this wide acceptance and

consideringhow ubi quitous applicable the abstr achavepmowntdiescr i bed i

Gunni Rode http://www.rode.dk/thesis Page5 of 197

EVALUATING SOFTWARE DESIGN PATITHRNRODUCTION al {e¢owQ{ ¢19{L{
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

the choice of OO method to guide the development process becomes less important. In many respects, as
reasoned in section 2.2, we see design patterns as orthogonal to OO methods, because the objects and
knowledge they represent are independent of which method produced the (initial) context to which a pattern

can be applied. Regardless of the OO method used, the software lifecycle normally includes phases such asOO
analysis (OOA), OO design(OOD) and OO programming (OOP), or implementation , perhaps refiiterated as
needed as the design evolves. Section 2.4 explains that t he analysis phasedetermines what is to be built, often
in form of a conceptual model, and the design phase how it should be built, as pointed out in section 2.5. Design
patterns are primarily used during the design phase, often modelled using UML as described in section 2.3, but
also in the implementation phase as the pattern s must be adapted to and implemented in the chosen language
As rationalised in section 2.6, the design and implementation phases are where the choice of language r eally
becomes important, because it determines how the design is executed; what is possible, what is not, and

ultimately how well the implementation reflect s the desired concepts and themes.

Chapter 3i iChapter 3 presents general pattern theory based on the ideas set forth by Christopher Alexander

within the field of architecture, but also relate s the theory to software design patterns, and in particular to the

0Gang of Fouthée poaGanegr naf nFpuand edasi ar e dop of seftwvareadesgn col | ect
patterns, and in order to understand software design patterns as a concept, at least the basic principles of
Christopher Al exanderds work on patterns andsapydecauser n | angu
software design patterns in general build on t he basic ideas set forth by Alexander, in particular t he o6 Gang of
Four 6 p avwluated hese [Gamma95 p.2]. Simplified greatly, a pattern is an abstraction of practical

experience and basic knowledge on how to solve a given problem, described in a consistent format so it can be

adapted for reuse in similar contexts. Section 3.1 cont ai ns an introduction ngthe Al exande
history and theory behind patterns and pattern languages; the information is mainly based on [Appleton00] and

[Lea93, subsidiary on [Alexander77]. Many of Al ex ander édy abstchet, Dt computer seiethaai t t

was not only reasonably quick to adapt several of his ideas, but also to introduce original pattern related

concepts as explained in section 3.2. According to Alexander, a pat tern must ideally possesscertain properties

to ensure the quality of the pattern and thus the quali ty of the (reusable) solution it generates, for example

Abstraction, Composibility, and Encapsulation. Many of these properties have similar meaning to desi rable

constructs in OO, which could explain why software patterns first became popular within this domain. A class,

for example, is an abstraction with encapsulated responsibilities that can be used as a component by other

classes. Pattern qualities are ex plained in section 3.3, but a pattern must furthermore balance opposing forces,

or constraints, within its context to reach a balance that implicitly will be present in the pattern and its

application [Appleton0Q]. This implies, as elaborated in section 3.4, that a pattern may represent trade A offs

between various forces, for example flexibility versus speedof an OO application. For a pattern to be useful, it

must concisely communicate both the problem it tries to solve and the solution to it , including expressing the

desired qualities and account for the forces at play . It does this by partitioning the description in various

descriptive elements, such as Name, Intent, Consequences, Implementation, Sample Code, etc., but t his is no

trivial matter as the notion of patterns can be applied in various contexts . Section 3.5 describes common

pattern formats used to describe patterns ; in particularly the format used to desc

patterns, where C++ and Smalltalk are used to illustrate key pattern points. This format is used extensively in

Gunni Rode http://www.rode.dk/thesis Page6 of 197

EVALUATING SOFTWARE DESIGN PATITHRNRODUCTION al {e¢owQ{ ¢19{L{
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

the evaluation, in particular the Implementation and Sample Code elements as they pertain to the
implementation and evaluation . Still, the lack of a formalised concept of a design pattern has long been a
vigorously debated issue within the pattern community . It goes to the very core of understanding, or agreeing
on, what software design patterns are. This is discussed in section 3.6. Formalism is closely related to tool
support for pattern mining, understanding, and application , and can therefore aid the implem entation, but also
limit the degree of freedom inherent in pattern descriptions . Section 3.7 describes how patterns can be grouped
in collections, or ideally languages , where individual patterns may be interrela ted in various cooperative ways.
All twentyfithree 0 Gang of F o uaredfinajlyapresemtedy sncluding an illustration of how they may
intricately connect and cooperate in numerous ways. The Gamma at el. classification scheme is also presented,
which classifies patterns according to scope (Class, Object) and purpose (Creational, Structural, Behavioural).
Section 3.8 describes how patterns can evolve, from discovery to ordinary usage to possibly becoming part of
the language itself. Pattern collections may also evolve over time. Finally, section 3.9 discusses the practical

application of patterns .

Chapter 4i iThe final chapter in the first part of this thesis is ch apter 4, which discuss selected studies on

related work. Al revol ve ar oapplightiont im e gide® BnmggageoGompereduto 6 patt er
chapter 2 and 3, the chapter is much more technical and practical . It is discussed how specific languages via

their paradigms and features affect individual 6 Gang of F osu Aséexplpimet in section 4.1, different

languages have different support for various pattern abstractions . According to Norvig [Norvig96, p.7] , patterns

can be classified based on their (language) implementation level as Invisible, Inform al, or Formal, where only

the |l atter corresponds to pattern application as described
context. The former two rely on built fiin language support and/or components, respectively. The level of

support can greatly influence the pattern application in the given language, and Java is no different . Several

dynamic and primarily functional languages have been shown to provide simpler pattern implementations

compared to the canonical 0 Garthclps deskribiffga hree duch langubge stueliestar@t i on s .
examined in section 4.2, concerning Common Lisp, Dylan, and Scheme. The primary conclusion drawn from

these studies is that dynamic features such as reflection, firstfi class types, multiple fi dispatch, and higherfi order
functionshave a positive impact on near | Morvg96lp.1@ fSullivan0®a @m438lang of Fo
This is interesting because even though Java is neither functional, nor dynamic , it supports reflection, closures,

generics, and dynamic proxies, which possibly could be used to achieve similar implementations. As section 4.3

reveal s, t he paBans daveokfeen Baplied i several earlier Java versions, at least, but we have

not found similar studies o f al | 0Gang of Four 6 pSawdieseof Aspectd and Effelva 5 or
implementations are also discussed in section 4.3. AspectJ usesAspect Oriented Programming (AOP) features to

allow Java to exhibit very dynamic features, such as open classes and support for method combination (advice).

Utilising such features, t he study claims that seventeen of the twenty fithree implementations exhibit modularity

improvements in terms of better code locality, reusability, com posibility, and (un)pluggab ility [Hannemann02

p.1]. This is interesting, because Java by itself can simulate many of the features found in AspectJ, though

requiring some work. The Eiffel studies are similar in that many of the features can also be found or simulated in

Java 6, but also because of the success ratein fully or partly componentizing twofit hi r ds of of h&oaGang

patterns [Meyer06, p.3]. Interesting. Section 4.4 provides a comparison of the features examined in the

Gunni Rode http://www.rode.dk/thesis Page7 of 197

EVALUATING SOFTWARE DESIGN PATITHRNRODUCTION al {¢cowQf
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

aforementioned studies, comparing them to features found in Java 6 that can be used in the practical
evaluation. It also tries to identify common traits of individual patterns as well as per pattern classification, e.g.

scope (Class, Object) and purpose (Creational, Structural, Behavioural) .

1.3.2. Part Twot Evaluation

The second part concerns the practical evaluation , which consists of individual pattern implementations as well

as acomparative evaluation of all implementations and features used, to identify common traits and issues.

Chapter 5i iChapter 5 defines a simple evaluation approach that can be used to investigate how well a given
language expresss all pattern functionality described inthe 6 Gan g o flmplEmentation and Sample Code
elements, and then applies it to define the e valuation goals used in this thesis. For others to judge the
evaluation, its premise must be known. As described in section 5.1, the focus is practical and experimental as
these elements focus implementation and language issues. Next, the evaluation approach is defined in section

5.2. It requires a detailed and a comparative evaluation. The detailed evaluation concerns the actual pattern

¢l 9{L{

implementation and participant usage,and descri bes the pattern i mplementations

pattern elements, albeit in more detail. T he comparative evaluation juxtaposes the individual observations and
feature usage to identify common traits and issues Section 5.3 uses the defined approach to establish the

evaluation goals. The overall goal is to provide a realistic, but subjective, evaluation that may help understand

how the o0Gang of Four 6 pat t e rThesfocus riscpraciicalvand teghnicala rfromcticeo per at e

perspective of a practising designer and/or developer. Three broad categories of Java 6 features are examined:
core language features (types, generics, closures, etc .), reflection (class literals, dynamic pr oxies, annotations,
etc.), and special language mechanisms (synchronisation, serialization, cloning, etc .). The comparative
evaluation will al so anal yse odestnbed bypGamraoetal. 6oompaeed tb thase
actually expressed in the implementations. It also classifies the level of support individual patterns have in Java

6 within the realm of the evaluation performed

Chapter 6i iChapter 6 is dedicated to the practical aspects relate d to the implementation in Java 6 . Section
6.1 outlines the technical set fiup, such as the exact Java version and IDE used. Eclipse 3.3 is the primary IDE,
but S u n BeiBeans 5.5.1 is used for comparison. Eclipse uses its own compiler implementation , whereas
NetBeans uses the official compiler . No plugfiins of any kind are required to run the evaluation code or tests. All
individual pattern implementations operate, directly or indirectly, on a set of model classes to imitate a larger
oOappl i cemmparedntd what could be achieved by isolated pattern implementations alone. Individual
implementations or parts thereof can thus more easily be used in other pattern implementations, expressing
many of the pattern relati onships described by Gamma et al. Section 6.2 explains how the implementations are
modelled using UML Class diagrams The diagrams are a big part of the detailed evaluation because they
meticulously illustrate pattern participants, including attributes and operations . In section 6.3, t he basic design
for the overall evaluation is described , also illustrated in UML Next, section 6.4 presents an overview of the
developed source code, divided into relevant packages for each pattern implementation . Several Meta packages
containing functionality such as model classes, loggers, reflection and general utilities have also been

developed. To ensure that others can confirm the pattern behaviour in the implementations provided in this

Gunni Rode http://www.rode.dk/thesis Page8 of 197

rel

ati

0O |

EVALUATING SOFTWARE DESIGN PATITHRNRODUCTION al {e¢owQ{ ¢19{L{
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

thesis, an absolute minimal ot e s t f r amas beerr dev@loped as explained in section 6.5. Each pattern
implementation supplies a test class to illustrate the functionality . This is not a replacement for JUnit testing,
but merely to report developed class usage via system out or file loggers. Complete source code, JavaDoc, and

UMLClass diagramsare available on the thesis website at http://www.rode.dk/thesis

Chapter 7i iThe first part of the evaluation is the comparative evaluation in chapter 7. The comparative

evaluation offers a thorough analysis of which Java 6 features are used to implement which patterns . Section

7.1 presents all identified pattern i feature mappings in table 7.1, highfilighting the most interesting entries

which are also summarised separately in section 9.2. The features investigated are those established in chapter

5, categorised as core language features, reflection , or special language mechanisms Each feature has a

dedicated subfisection that explains its usage across all patterns, identifying possible common traits and

alternatives, as well as a small conclusion to its usefulness with regards to help expressng 6 Gang of Four 6
pattern functionality. Numerous program listings are used to illustrate pattern functionality. The evaluation

shows that the pattern i mplementati ons namiafeafures Asthedast Javads |
thing, section 7.1 presents observations from the pattern implementations on how to translate C++ features into

Java 6 features relevant to several patterns. Next, section 7.2 compares the pattern relationships expressed in

t he evaluation to the o0Gang of Four éd del3%rThe expgressede!| ati ons't
relationships are subje ctive based on the evaluation design rather than language features , but help illustrate

how versatile the 0Ga Togonodde tReccomparatiye avialtiagon, secteom &.3 classifies the

patterns according to the ir implementation level as described by Norvig, explained in section 4.1.

Chapter 8 iChapter 8 presents the individual pattern implementations. Section 8.1, 8.2, and 8.3 present the
evaluations of Creational, Structural, and Behavioural patterns, respectively. Each pat tern investigation is
presented as required by the evaluation approach defined in chapter 5. The detailed evaluation shows that
practically all pattern functionality described in the Implementation and SampleCade el ements of the 0Gz¢
F o u design patterns can be implemented or simulated in Java 6, including Meta information not used directly

in the canonical implementations. The implementations express the concepts described in chapter 2 and 3.

Chapter 9 iThe results of the comparative and detailed evaluations are summarised and presented in chapter
9. While chapter 7 and 8 provide summaries and conclusions where appropriate, chapter 9 comments on the
evaluation as a whole, present s highfilights, and puts the evaluation and its results in perspective. Section 9.1
determines the level of compliance between the implementations and t he 0 Ga n g candeptsFthemes)
and pattern descriptions. Section 9.2 concludesthat Javads core | anguage features promol
intent, and reusability, and form the base of all the pattern implementations. Combined with reflection and
annotations, this offers al ternative and flexible pattern implementations. Next, section 9.3 presents the highii
lights identified during the evaluation that utilises the Java 6 features in the manner just described. Highfi lights
include generic factories in Abstract Factory and Factory Method, guarded types in Memento, annotated
observers in Observer, dynamic proxies in Proxy and State, and enumerations in Singleton (Singletonfiasfi
SnglefiConstant idiom). We end the evaluation conclusions with an evaluation of the defined evaluation

approach itself in section 9.4. We conclude that the evaluation approach offers a way to investigate and judge

Gunni Rode http://www.rode.dk/thesis Paged of 197

http://www.rode.dk/thesis

EVALUATING SOFTWARE DESIGN PATITHRNRODUCTION al {¢cowQf
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

how wel |l a given | anguage c anctioaalitp exeressed ih thee Imple@entatepn and
Sample Code elements, but we do not draw any conclusions as to whether the language catalyst should be used

in a given scenario, here Java 6. The evaluation serves as a tool from which experience can be drawn .

Following part two, ¢ hapter 10 contains an overall conclusion to this thesis and the work performed . Section
10.1 explains the perspective in which this thesis and its conclusions must be understood: from a practical and
experimental point of view , explanatory in nature. T he initial goals have all been achieved and the specific
results and contributions made by this thesis are listed in section 10.2. Primary contributions include the
detailed evaluation in chapter 8, which shows that practically all pattern functionality described in the
Implementation and Sample Code elementsof t he o6Gang of Four 6 patterns c
Java 6, as well as the pattern and Java 6 functionality highfilights from section 9.2. Before we conclude this

thesis with a final remark in sectio n 10.4, an outlook on possible future work is provided in section 10.3.

1.3.3. Work Performed

The work performed during the project and presented in this thesis has been bot h theoretical and practic al,
with emphasis on the latter . The amount of hours put into the project has been substantial; the time spent
reading, writing, experimenting, shouting, and programming is hard to put into words, but has been spent

nonetheless.

1.3.3.1. Theoretical

The theoretical aspect covers the research, books and articles read, not forgetting the summation and discussion
of the relevant material presented in this thesis. Making clear demarcations proved no easy task because, in our
view, everybody wit hin the field of computer science seem to have an opinion on software design patterns,
perhaps because of the apparent lack of a common understanding and formal methodology. Much new material
had to be covered, understood, and some of it paraphrased for th is thesis; and some material that was expected
could not be found. All this initially came as a bit of surprise; while design patterns are easy to use, ordinary use
normally does not warrant in fidepth scrutiny, research, and evaluation based on scientific t heories. As this
thesis concludes, the use of design patterns is very much a practical discipline. Due to the shift in focus of this
thesis, much early research and work unfortunately had to be discarded, but this process also caused much

improved (practic al) focus and structure in the thesis. [Rode07] is the final work description.

The bibliography contains the list of references used in this thesis . Pivotal among them are [Gamma9§, [Lea93
Lea0d, [Appleton0Q], [PPR, [Buschmann9§, and [WirfsBrock90] for the theory and background; [Norvig96],
[Sullivan02a; Sullivan02b], [Hannemann0d, and [Arnout06; Meyer06] for the related work; and [Stroustrup91],
[Gosling05, and [Bloch01] for the implementation and evaluation . The choice to use
patterns was made because of experience and their widespread use . The (refi) reading of the [Gamma9§ book
gave usmuch newinsight i nto the workings of several familiar

dense and covers a lot of information, some of which can easily be missed on casual reading. This is one of the
reasons why the evaluation investigates all functional ity described in the Implementation and Sample Code

elements, and not just the canonical implementations.

Gunni Rode http://www.rode.dk/thesis Pagel0of 197

¢l 9{L{

Four 6

an be

t he

0Gang

fou

0 Ga

of

EVALUATING SOFTWARE DESIGN PATITHRNBODUCTION a! {¢9wO{ ¢1 9{L{

TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

1.3.3.2. Practical

The practical part covers everything related to the evaluation and implementation (s). It took substantial effort

to figure out how to condu ct a meaningful evaluation of design patterns. An evaluation only makes sense if the

premise for the evaluation can be viewed and judged by others, so they themselves can conduct a similar
evaluation, or at least judge the outcome in the proper context. Because of the shift in focus, we deemphasised

a formalised evaluation approach compared to the practical work performed in the evaluation . Unfortunately,

this was not done until after we had developed a semi fiformal approach, which was then completely discar ded.

On the plus side is that this gave the entire project

patterns, software projects and systems rarely get things right on the first try.

The choice to use Java 6 was because of personal experience with Java, but also because we know of no other

study analysing the use of Java 6, or 5 for that matter, as the language toi mpl ement the 0Gang
patterns. Experience is essenti al in a project |ikethetwisée dd t he
implementations may become trivial. The overall implementation has produced over 300 Java source files,

yielding 400+ compiled class files (including enumerations and inner classes). The design, implementation, test,

and documentation took lon ger than expected, as always. We feel it is important to establish that the pattern
implementations are not trivial shells unless explicitly warranted by the design, but realistic and sometimes

quite complex. Because of the scale of the implementation s, th e evaluations also took quite some time . In

reality, the theoretical and practical work performed exceeds 30 ECTS, though in part because of the shift in

focus. This indicates that the thesis scope is perhap stoo wide and/or too ambitious, but done is done.

Gunni Rode http://www.rode.dk/thesis Pagellof 197

an

of

ot

r

EVALUATING SOFTWARE DESIGN PATITERMSORAND BACKGROUND al {¢owof
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

Objectt Oriented Development

The objead oriented model makes it easy
to build up programs by accretion.
What this often means, in practice, is that

¢19{L{

it provides a structured way to write spaghetti code.

I TPaul Graham

In a room full of top softwa designers,

if any two of them agreéhat isa majority.
T 1Bill Curtis

Object i Oriented (OO) development is entirely possible without the use of OO design patterns, but if OO design
patterns are used, they must be applied within the realm of OO develbpment. This chapter gives a short
presentation to OO development and to the process of designing OO systemswith focus on how OO and design

patterns interact , especiallyina Javacontext. The 0Gang of Foumwéevda in this thgsiadan ¢
be used as a tool to aid the design of OO systems regardless of the Object i Oriented Method (OOM) used The
patterns represent solutions to problems related to the design of OO systems, but at the same time express this
knowledge using OO concepts and principles. Hence, the general OO concepts must be understood in order to
understand the design patterns and to perform the evaluation in a consistent manner , including understanding
the approach wutilised by Ga mmaesigntpatters t hemselves We als@ lBla theg
themes and concepts described by Gamma et al. to Java. To understand how and when design patterns can be
utilised when designing OO systems, we present abridgements on ObjectfiOriented Analysis (OOA), Objectfi

Oriented Design, and Objectfi Oriented Programming (OOP)as well.

The Object fi Oriented (OO) approach to software design attempts to manage the complexity inherent in real 0
world problems by abstracting out knowledge and encapsulating it within objects [WirfsBrock90, p.5].
Identifying the proper objects, relationships, and interactions are the key objectives to any successful OO
design, but this is no trivial matter. The granularity of the design is thus a (complex) object, but an object may
also represent an interaction with a complete subiistructure, for example a reusable component or a software
design pattern such as a 0Gang . NuUmerdupQOmiethopsahtivie beem developed, each offering
more or less proprietary procedures on how to approach th e design and development in order to fulfil these
objectives, but no common standard exist s. Up until deployment , and regardless of the method used, t he OO
development life ficycle generally consists of analysis, design, implementation , and testing phases in some form.
The phases may be overlapping or refiiterated, each time refining the design and implementation . This is
dictated by the OO method and procedures used or more likely by (ever) changing demands and specifications.
Compared to other forms of software development the design phase is considerable larger, because OO systems

are designed for easy reuse, maintenance, and modification [WirfsBrock90, p.9].

As the design phase is so central to OO development, it is paramount that the design is sound and durable. While
the OO method may guide the design process, it cannot offer the specific knowledge represented by a pattern.
Patterns known by the designer can be used as a tool in the design process because they offer proven soluti ons

to common problems, which ideally heighten the quality of the design. Part of the pattern knowledge is

Gunni Rode http://www.rode.dk/thesis Pagel2of 197

EVALUATING SOFTWARE DESIGN PATITERMSORAND BACKGROUND al {¢owQ{ ¢l 9{L{
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

describing the objects and their relationships relevant for the given scenario, thereby making the job of the
designer a little easier. As a benefit, the application of well fiknown patterns will probably make the design
seem more familiar to other designers as well. Figure 2.1 illustrates the OO software development life i cycle

commonly used excluding phases suchas deployment and evaluation and the relation to patterns .

Figure 2.1 i OOdevelopment life fi cycle and patterns (modified from [WirfsBrock90, f.1 2])

The OO software development life fi cycle traditionally
Testing con;ists of an ana_llysis, design, implementation, z_;md
Analysis testing phase, which may be overlapping or re fiiterated
asdictated by the OOmethod used, each time refining
the design and impleme ntation.

Implementation
Idioms

. Different categories of patterns are used in different
Architectural phases of the life fi cycle. Architectural patterns have
patterns large design granularity and are used early in the design
. phase. Analysis patterns target the domain . Design
Analysis patterns patterns have medium granularity and can be used
throughout the entire design phase , but are also closely
. related to the implementation . Idioms have the smallest
Design granularity and are connected with a specific language.

Design patterns

Different categories of patterns are used at different times i n the development process, but their usage can

overlap as illustrated in figure 2.1 above. As explained in section 2.5.1, design patterns are patterns targetin g

design problems with medium granularity , used to refin e the subfi systems or components of an OO system, or

the relationships between them [Buschmann96 p.13]. The o0 Gang of Four 6 patesgmns are
patterns, which is thus the category of pattern s this thesis investigates. From a practical point of view, d esign

patterns are also closely related to the implementation because their description s contain source code and must

in any case be implemented. Any type of pattern used in OO development inherently reflects OO concepts such

as objects, classes, inheritance, encapsulation, polymorphism, etc. To understand such patterns these concepts

need to be understood as well. Hence, the next section presents an introduction to OO concepts as understood

in this thesis before we describe the processes pertaining to OO development and the relation to patterns .

2.1. Objectt Oriented Concepts

The general lack of consensus regarding fundamental OO concepts is clearly illustrat ed by a recent survey of
existing literature related to OO development performed by Armstrong [Armstrong06]. Two hundred and thirty
nine articles, books, and conference proceedings related to OO development were examined by Armstron g to try
to identify the essential elements of OO development. Thirty fnine concepts were identified, but only eight of
these were utilised by the majority of the sources reviewed [Armstrong06, p.124]. Armstrong argues that the
lack of consensus may be because we do not yet thoroughly understand the fundamental concepts that define
the OO approach. Many authors suggest concepts that define OO, taking for granted that the concepts are
known, or that no universal concepts exist; others acknowledge the need for a consensus [Armstrong06, p.123].
Few works offer methods of precise specification for OO design, and none are commonly recognised as

standards.

Armstrong defines a two fi construct taxonomy containing the ei ght fundamental concepts identified, also known

Gunni Rode http://www.rode.dk/thesis Pagel3of 197

EVALUATING SOFTWARE DESIGN PATITERMSORAND BACKGROUND al {¢owQ{ ¢l 9{L{
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

as quarks [ArmstrongO06, t.3]. The taxonomy is reproduced in table 2.1 below.

Table 2.1/ Ar ms t r o mgodsruct O@daxonomy (modified from [Armstrong06, t.3])

Construct Description

Structural Construct

Abstraction Creating classes to simplify aspects of reality using disti nctions inherent to the problem.

Class A description of the organisation and actions shared by one or more similar objects.

Encapsulation Designing classes and objects to restrict access to the data and behaviour by defining a
limited set of messages that an object can receive.

Inheritance The data and behaviour of one class is included in or used as the basis for another class.

Object An individual, identifiable item, either real or abstract, which contains data about itself

and the descriptions of its manipulations of the data.

Behavioural Construct

Message A way to access, set, or manipulate information about an object.
Message Pasing An object sends data to another object or asks another object to invoke a method.
Polymorphism Different classes may respond to the same message and each implement it appropriately.

By using an OO perspective to classify the individual concepts, they are placed in one of two constructs, namely
the Structural or Behavioural construct. Armstrong describes Structural concepts as focused on the relationship
between classes and objects, as well as the mechanisms that support the class/object structure. A class is an
abstraction of an object. The class/object encapsulates data and behaviour and inheritance allows the
encapsulated data and behaviour of one class to be based on an existing class [Armstrong06, p.127]. On the
other hand, Behavioural concepts are focused on object actions. Armstrong describes message passing as the
process in which an object sends information to another object, or asks the other object to invoke a method.
Last, polymorphism enacts behaviour by allowing different objects to respond to the same message differently
[Armstrong06, p.127]. Behaviour and structure are interconnected in the sense that behaviour is a way of
manipulating structure, but behaviour must also support the actions of the system. The OO perspective used in
the taxonomy to identify concepts as either St r uct ur al or Behavioural mat ches very v
classification concerning pattern purpose , namely Structural, Behavioural, or Creational as described in section
3.7.1 on page 44. It also matches quite well with the types of UML diagrams targeting Structural and

Behavioural conduct as described in section 2.3.

In order to perform a meaningful evaluation of t he 0 Gd&rog desifn patterns, the general concepts and

themes inherently expressed by the design patterns must be understood. The pattern authors understanding of

OO concepts will naturally be reflected in the pattern descriptions, but pattern users may have a d ifferent

understanding as Ar ms t r survegy desplains. We must therefore establish the basic concepts and themes
reflected in the 0Ghuckdy,tbidisnBtau difficultpas it $oendsnSgveral concepts related to

OO development in classibased | anguages are summarised in chapter one
[Gamma95 p.11-28]. Obviously, this thesis adapts the concepts and themes described by Gamma et al. ,

especially because Java is a clas$ibased language like C++ and Smalltalk. Not doing so would be a topic for a

Gunni Rode http://www.rode.dk/thesis Pagel4of 197

EVALUATING SOFTWARE DESIGN PATITERMNSORAND BACKGROUND

al {¢owQ{

T UKS

different thesis altogether, for example

aDFy3

2F C2dzNE LI GGSNya

AYLX SYSYGSR Ay Wk @I ¢

an evaluation targeting prot otypedfibased languages where OO

concepts such as classes and inheritance has no or at least a different meaning.

2.1.1. Concepts

The OO concepts described i n

relation to the languages used, i.e. C++ and Smalltalk, as wellast h e

chapter one of

t h e Ganbnad§ ip.gln28]Raee textplaimed & 6

probl ems the

designed to solve. For example, the concept of mixin classes seems only relevant in a language like C++ that

allows multiple functional inheritance (as opposed to mixin types, in Java in form of interface implementation

that requires composition).

0Gang of

The delegation and acquaintance concepts directly refers to one of the general

F opuncigles diededcriped in the next section. The number of concepts is around forty in

total of varying granularity , though many of them have fine granularity . Thirty fi eight is the number of bold#f

faced words, i.e. concepts, with associated explanations on pages 11 -28 in [Gamma9g. Some have identical

meanings, though, for instance request and message. In addition, a few concepts are introduced as part of a

figure or section heading, for example application. Table 2.2 lists the identified concepts in alphabetical order.

Because the concepts are described in relation to C++, the table also supplies comments related to Java .

Table 2.2 0 Gang of

Concept

Four 6

Description

concepts

Java 6 Remarks

0Gang

Abstract class

A class whose main purpose is to define a common
interface for its sub ficlasses [Gamma95 p.15] .

Supported.

Abstract
operation

The methods an abstract class declares but does
not implement [Gamma95 p.15].

Supported. Abstract methods can only be
declared in abstract classes. Interfaces also
declare methods with no corresponding
implementation.

Acquaintance

An object uses another object in a loosely coupled
fashion [Gamma95 p.22].

Composition, supported .

Aggregatee The object owned by the aggregator [Gamma95 Composition, supported. Also called
p.23]. Aggregate Member.

Aggregation An object owns or is responsible for another object | Composition, supported.
[Gamma9s p.22].

Aggregator The object owning the aggregatee [Gamma95 Composition, supported .
p.23].

Application Type of program where internal reuse is important
[Gamma9] p.25].

Blacki box Reuse by object composition [Gamma95 p.19].

reuse

Class An objectds i mpl ement at i|Supported since Java is a classi based
[Gamma9; p.14]. language. Java also provides access toan

0 b j e clasdasruntime.

Class Defining new classes in terms of existing classes for | Java supports single inheritance only, but a

inheritance code and representation sharing [Gamma95 class can implement several interfaces .
p.15,17].

Client The object that issues a request [Gamma9i p.11].

Concrete class

A class that is not abstract [Gamma95 p.15].

Supported.

Gunni Rode http://www.rode.dk/thesis

Pagel5of 197

¢19{L{

book |

of

Foul

EVALUATING SOFTWARE DESIGN PATITERMNSORAND BACKGROUND

al {¢owQ{

T UKS

Table 2.2 i 0

aDFy3

2F C2dzNE LI GGSNya

of Four 6

AYLX SYSYGSR Ay Wk @I ¢

Gang

concepts

Concept Description Java 6 Remarks

Delegate The object being forwarded a message in Another form of composition, supported .
delegation is called a delegate [Gamma95 p.20].

Delegation Using object composition, an object receiving a Supported. Delegation implies composition,
messageforwards the message to its delegate but composition does not imply delegation
passing itself along as anargument [Gamma95 as aggregation and acquaintance could also
p.20]. be used.

Dynamic Runtime association of a message to an object and | Supported via polymorphism. The signature

binding one of its methods [Gamma95 p.14]. of the method is determined at compile fi

time, but the actual type of the
(polymorphic) object is determined at
runtime [Sierra06, p.111].

Encapsulation

The internal state of an object cannot be accessed
directly, and its representation is invisible from
outside the object [Gamma95 p.11].

Supported, but must be e nforced by access
modifiers.

Framework A set of cooperating classes that makes up a
reusable design for a specific class of software
[Gamma9s p.26].
Generics Parameterised types as used in certain languages | Supported, including support for bounds
[Gamma9s p.21]. and wild fi card types (not found in C++).
Type information is not alwa ys present at
runtime (erasure), and generics do not
allow (static) template specialisation as in
C++. Corresponds to parameterised types.
Instance A created object is a unique instance of its class Supported. Instances can be compared
[Gamma9s p.15]. based on identity or based on equivalence
(equals).
Instance The internal data of an object are represented as Supported. Can also be accessed via
variabl e instance variables [Gamma95 p.15]. reflection.
Instantiation Objects are created by instantiating a class Supported. Objects can also be created
[Gamma9; p.15]. reflectively.
Interface The set of all signatures for a given object Interface as a type is supported, but a class
[Gamma9; p.13]. may also represent the set of all signatures
of an object.
Message An object invokes a method when it receives a Supported.
message. Messages are the only way to get an
object to invoke a method [Gamma95 p.11].
Method A typical name used to describe the procedures Supported. Can also beaccessed and/or
that operate on object data. If encapsulation is invoked reflectively .
enforced, methods are the only way to change the
internal state of an object[Gamma9i p.11].
Mixin class A class providing an optional interface or Mixin classes are not supported , but mixin

functionality to other classes, but it is not intended
to be instantiated and requires multiple
(functional) inheritance [Gamma95 p.16].

types in form of interfaces that require
composition are'. Java supports dynamic
proxies that allow implementation of
interfaces at runtime (reflection) .

1

The java.io.Serializable

and java.lang.Cloneable

interf aces are each a hybrid between a mixin class and a mixin

interface. Java has built fiin support for both of these special interfaces that cannot be described by standard interface

semantics, for example default serializable behaviour in form of private inher

Gunni Rode http://www.rode.dk/thesis

ited methods.

Pagel6 of 197

EVALUATING SOFTWARE DESIGN PATITERMNSORAND BACKGROUND

al {¢owQ{

T UKS

Table 2.2/ 6 Gang

aDFy3

2F C2dzNE LI GGSNya

of Four 6

AYLX SYSYGSR Ay Wk @I ¢

concepts

Concept Description Java 6 Remarks
Object An object packages both data and procedures that | Supported. All classes inherit
operate on th e data [Gamma95 p.11]. java.lang.Object
Object An alternative to class inheritance that composes Supported.
composition (assembles) objects to obtain complex
functionality [Gamma95 p.18].
Operation Synonym for method. Supported.
Override A subf class may override a method defined in its Supported unless the method is declared
parent class [Gamma95 p.16]. final . Java supports covariant return types.
Parameterised | A type that is declared without specifying all the In Java a synonym for generics.
type types it uses until the point of usage [Gamma95

p.21].

Parentficlass

A parentfi class defines data and methods subfi
classes can inherit [Gamma95 p.15].

Supported, also called superficlass Java
provides access to the superii class at
runtime as well as the actual instance.

Polymorphism

Substitution of objects with similar interfaces at
runtime using dynamic binding [Gamma95 p.14].

Supported. All nonfi primitive classes are
polymorphic in Java as they inherit
java.lang.Object and define their own
type. See dynamic binding.

Request Synonym for message.

Signature The name, parameter, and return type of a method | Supported. Can be accessed reflectively.
[Gamma9; p.13].

Subfi class A subi class inherits (all) data and methods from Supported, but access modifiers determine
its superfi class [Gamma95 p.15]. data and methods inherited.

Subfi type A type is a subfi type of another type if its Supported.
interface contains the interface of its super fitype
[Gamma9s p.13].

Superfitype A type is a superfitype of another type if its Supported.
interface is included in the interface of a sub fAtype
[Gamma9; p.13].

Template Parameterised types as used in C++ [Gamma95 Not supported by Java.
p.21].

Toolkit A class library [Gamma95 p.26].

Type A name used to denote a particular interface Supported, but t ype is usually used to
[Gamma9; p.14]. describe the functionality listed under

Interface. A type is thus a class or
interface.
White fi box Reuse by sulfi classing [Gamma95 p.19].
reuse

Of the eight fundamental concepts identified by Armstrong listed in table 2.1, all but message passing are

described as a distinct concept in some form by Gamma et al., though some using slightly different names and
meanings, for example polymorphism and dynamic binding . However, message pasing is implicitly part of the

message (request) and method (oper at i on) 0 Ga n g. Thig is dimlar todmethanl ineoeagion snot

being described either. We therefore conclude that the concepts are encompassed by the taxonomy suggested

by Armstrong. As t he o0Design Patternsé book predates Armstrongds

Gunni Rode http://www.rode.dk/thesis Pagel7 of 197

EVALUATING SOFTWARE DESIGN PATITERMSORAND BACKGROUND al {¢owQ{ ¢l 9{L{
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

resemblance is an indication of how infl uent ingHavebeend or how
and still are. On the other hand, many of the concepts described are well fiknown OO principles that any
developer has to know to design and implement durable OO designs. Concepts such as classes, inheritance,

polymorphism, etc ., cannot be ascribed to Gamma et al.

There is only one concept we disagree with the definition of , namely encapsulation. From our perspective, the
merging of the different meanings of encapsulation and information hiding by Armstrong is flawed, even though
Gamma et al. do the same [Gamma95 p.11]. Consequently, the Gamma et al. definition of sub ficlass is faulty as
well, because information hiding will determine the data and methods to inherit (see Java remark). We consider

encapsulation and informatio n hiding as two distinct concepts as explained by Rogers [Rogers03:

Encapsulation is a language construthat facilitates the bundling of data with the methods
operating on that datalnformation hiding is a design principlethat stives to shield client
classes from the internal workings of a clagncapsulation facilitates, but does not
guarantee, information hiding Smearing the two into one concept prevents a clear

understanding of either

The remarks regarding Java 6 functionality in table 2.2 clearly indicates that the concepts are well i suited for a
Java environment. Hence, the concepts are adapted to represent our understanding of OO concepts as well,

keeping the distinction between encapsulation and information in mind.

2.1.2. Themes

The first chapter o fbodk hlso desddikes a gptnof réoactirting themesdthat permeate the
0Gang of Four 6 appr oa c htheir desigh@atteres | Gamrogd5rpelh-81]. &he doncepts listed
in the previous section facilitate the themes , but these themes must also be understood in order to understand

t he 0 Ga n g design pafteyns.r T&vo important principles summarise their ideas:

1. Program to an interfac e, not an implementation [Gamma95i p.18]; and

2. Favour object composition over class inheritance [Gamma95 p.20].

Perhaps more than the design patterns themselves, we consider these principles evidence of how signifi cant the
o0Desi gn Pat t sbeansndOOdeveldpmenmta They cover the concepts listed in table 2.2, and express
the need for abstraction, loose coupling, and flexibility in OO (refi) designs. By using interfaces, clients remain
unaware of the specific types (and classes) of objects they use [Gamma95 p.18]. Interfaces are directly
supported as a concept in Java. Gamma et al. promote indirection as a mean to achieve decoupling, flexi bility,
and reuse, and encapsulation, information hiding, and parameterised types may aid in achieving this as well
[Gamma9] p. 19,22]. They prefer dynamic (e.g. runtime) relationships as opposed to static ones and thus favour
object co mposition over implementation inheritance [Gamma95 p.20]. Delegation is the extreme example of
composition, which can always be used to replace inheritance [Gamma95 p.21]. However, dynamic, highly

parameterised software is harder to understand than more static software [Gamma95 p.21], which thus may

Gunni Rode http://www.rode.dk/thesis Pagel8of 197

!

EVALUATING SOFTWARE DESIGN PATITERMNSORAND BACKGROUND a!l {¢o9wO{ ¢1 9{L{

TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

influence the pattern descriptions. The need for re idesign may still arise, but by following the two principles
and utilising relevant design patter ns expressing them, the process of re fidesign becomes easier, because then
aspects of a system structure may vary independently of other aspects [Gamma95, p.24]. As Java 6 supports the

concepts from the previous section, these themes can be expressed in Jav a providing a prudent designer.

Many of the principles and themes described by Gamma et al. are represented by the General Responsibility
Assignment Software Patterns (GRASP]Larman04]. Grand provides a Java version of these pattern s in [Grand99,
p.51-87]. These patterns are not design patterns as such They do not target a specific problem, but provide
insight into how responsibilities should be assigned to classes to achieve a well fistructured design, which is
easily understood and maintained [Grand99, p.52]. For example, Low Coupling and High Cohesion [Grand99,
p.53] is closely related to both of the above principles, and Polymorphism [Grand99, p.69] is naturally related to

concepts such as polymorphism, supeffi class, subficlass, inheritance, etc. Several of these themes have by some
been promoted to design patterns. Grand provides Delegation [Grand98, p.53] and Interface [Grand98 p.61]

patterns, but whether such fundamental concepts are best expressed as design patterns is doubtful in our view.

2.2. Objectt Oriented Methods

An Objectfi Oriented Method (OOM) provides a set of techniques for analysing, decomposing, and modula rising
software system architectures [Schmidt, p.4]. The techniques may be applied in different phases of the software
lifecycle , e.g. in the analysis, design, and implementation phases (ee figure 2.1) [Schmidt, p.6] . An OOM can
for example describe how the requirements found in the analysis can be transformed into a software model
consisting of objects [SE]. Despite the widespread use of OO as explained in section 2.1 on page 13, there is not
only a lack of consensus regarding the formalisation of the relevant concepts and principles inherent in OO, but
also on how to approach the overall design process. Hence, numerous OO methods have been developed, each
trying to remedy this, for example Rational Unified Process (RUP) [RUR or Modelfi Driven Architecture (MDA)
[MDA, but none are an accepted in dustry standard. Different software development processes are used in
various OO methods, such asthe sequential Waterfall model , or the Iterative, Spiral, or Agile development. All
but the first are based on the idea of repair and evolution and are in some form iterative in nature , while the

Waterfall model is more static and employs replacement. RUP, for example, uses iterative development.

2.2.1. Patterns

The traits of a given OOM and the procedures used will guide the OO development . It is difficult to specula te on
the impact a given OOM has on the application of design patterns , if any, without in fidepth knowledge and
experience with each method . Vlissides one of t he 0 Ga n gargods th& patterné domet meece r s ,
tools or methodologies to be effectiv e [Vlissides97, i.4] . Based on experience we agree. However, certain
methodologies directly address the use of patterns or other techniques, such as UML Responsibility Driven
Design has no mention of patterns what so ever [WirfsBrock90], while Extreme Programming (XP), for example,

defi emphasises or even ignores the need for patterns [Fowler04].

Nevertheless, we do not even see XP as incompatible with design patterns. XP is a software e ngineering

Gunni Rode http://www.rode.dk/thesis Pagel9of 197

EVALUATING SOFTWARE DESIGN PATITERMSORAND BACKGROUND al {¢owof
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

methodology developed mainly by Kent Beck and Ward Cunninghan, the duo that also introduced software
design patterns [Beck87 as described in section 3.2. It is typically used in Agle development, and is iterative in
nature. It advocates the use of Evolutionary Design contra to Planned Design under certain preconditions
[Fowler04]. Central is the use of several enabling practices, such as testing, refactoring, a nd continuous
integration that embodies and encourages certain values, such as simplicity and communication. This allows
changes to be performed much faster and cheaper, thus reinforcing the enabling practices [Fowler04; PPR. Due
to the evolutionary nature of this methodology , it is often believed that Object i Oriented Analysis (OOA) Design
(OOD) and design patterns are incompatible with XP. Others, such as Fowler, think that patterns are underrated
within XP, and are in no way contradictory to the paradigms of XP and that program code developed using the
methodologies can evolve into patterns during refactoring. We agree, and conclude that the enabling practices

of XP to some extent can be viewed as a form of pattern d iscovery, or mining (see section 3.8.1).

Designers often feel strongly about their preferred development method, OO or otherwise, sometimes to the
point of a religious belief. In many respects, we see design paterns as orthogonal to OO methods, because the
objects and knowledge they represent are independent of which method produced the (initial) context to which
a pattern can be applied. While design patterns can be grouped in collections, such as pattern syst ems and
languages asexplained in section 3.7, the effect of this in our experience rarely influences their practical

application when used in a specific process. Their application is thus largely independent of the OOM used

2.3. Unified Modelling Language

Regardless of OO method and processes used, the Unified Modelling Language (UML) is generally used for object
modelling and illustration [UML0OJ. UML is an extensible generalfi purpose object modell ing and specification
language used to create abstract (design) models illustrated graphically. It is not limited to modelling software,

but is widely used in various OO methods. The model of the system can be described using a Functional Model
(us er i sf vipa; iusing an Object Model (structural); and/or using a Dynamic Model (internal behaviour).
Different models use different types of diagrams, for example a Use Case Diagram for the Functional Model; a

Class or Object Diagram for the Object Model; a nd a Sequence Diagram for the Dynamic Model [UMLOS.

UML can be used in various development phases. UseCase Diagrams can specify demandsthe analysis must
adhere to (see also [Cockburn01]). Class and Object Diagrams can be used in the design phase to describe the
identified classes and objects, and Sequence Diagrams can illustrate the behaviour of classes, objects, and

methods. As the design evolves so must the diagrams. UML does not have builtfiin notations for all features

found in Java 6, such as annotations, but can be adapted by user fidefined extensions.

2.3.1. Patterns

Patterns related to OO development commonly use UML models, because the pattern participants (i.e. classes
and objects) are easily illustrated using the UML models. Graphical illustrations of pattern functionality are a
requirement to ensure proper quality of the pattern as well as a meaningful description of its functionality as

explained in section 3.3 and 3.5, respectively. Th e 0 Ga n g pattdrns predate WML, but use other forms of

Gunni Rode http://www.rode.dk/thesis Page20of 197

¢19{L{

EVALUATING SOFTWARE DESIGN PATITERMSORAND BACKGROUND al {¢owof
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

closely related types of illustrations. In this thesis, only UML Class diagrams are used. Section 6.2 details the

usage, but the evaluation produces a Class diagram for each pattern implementation.

2.4. Objectt Oriented Analysis

As illustrated in figure 2.1, ObjectiiOriented Analysis (OOA)is the first phase in OO development, excluding
mundane tasks such as sale, legal affairs, project planning, and management in real corporate environment s. A
typical scenario is that a given client has produced a (far from complete) list of demands identif ying the overall

behaviour of the system that must be built . The demands can be specified in a number of ways, for example as

Use Cases[Cockburn01, p.1-3]. The analysis is concerned with developing software engineering requirements

and specifications from these demands, often expressed in form of a conceptual object model, as opposed to

the traditional data or functional views of systems [Larman04; SE]. The analysis is a discovery processthat
determines what is to be built, and the design determines how it is done [Schmidt, p. 6; SEJ WirfsBrock90, p.5].

This is done by identifying the (real filife) abstractions, concepts, responsibilities , and relationships present in

the system in order to form a conceptual model of the system while adhering to the demands . The practical

procedures on how to do this as well as how the model is described are typically dictated by the Objectfi
Oriented Method (OOM)used.

Example 2.1 i i Consider the task of designing a sophisticated notification mechanism able to notify
subscribers when certain events occur with support for different means of deliveries. Example usage could be in
Internet applications that must notify users when certain events occur, data driven or otherwise , or as a mean
to monitor application usage and abnormalities. The demands set forth by the client will (or should) specify the
overall context and desired functionality . From these, the analysis must identify the relevant concepts and their
interactions forming the conceptual model of the notification mechanism. The notification mechanism is used as
a continuous example in the first part of this thesis. This chapter offers a number of examples illustrating how

different development phases and patterns may influence the development of such a mechanism.

Simplified, the abstractions and concepts could include User, Subscription, Notifiable, Event, Notification,
Scheduler, Processor, Delivery, Formatter, and Message a User, for instance, could be an abstraction of a
logical entity known to the system, such asan identified human or program, while Notifiable is a more abstract
concept related to f unctionality rather than a physical entity. To express the relationships, the model could
specify that a User can have different Subscriptions pertaining to different Notifiable contexts, e.g.

subscriptions to receive different kinds of notification s. When a certain Event occurs related to a Notifiable
context, a Notification will be created and scheduled by a Scheduler Based on the Notification, relevant
Subscriptions will be identified by the Processor handling the Notification , and Messages will be created and
formatted by a Formatter as required by the Delivery mechanism preferred by the User . Furthermore, the
conceptual model must describe the responsibilities related to the core functionality of each concept ; for
example, the type of Delivery must ensure that a proper type of Message is formatted and delivered, or perhaps
even create it . Once the conceptual model is defined and described, the design phase will determine how the

model must be utilised from a software perspective , i.e. how it should be t ransformed into program code y

Gunni Rode http://www.rode.dk/thesis Page21 of 197

¢19{L{

EVALUATING SOFTWARE DESIGN PATITERMSORAND BACKGROUND al {¢owof
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

2.5. Objectt Oriented Design

Object i Oriented Design (OOD)is the process of defining the software objects and collaborations forming an O O
model of a software system in order to implement the identified requirements found during the analysis
[Larman04; SEj WirfsBrock90, p.10]. The design phase is thus the second phase in OO developmentand where
the analysis determines what is to be built, the design is a process of invention and adaptation that determines
how it is done [Schmidt, p.6; SEJ WirfsBrock90, p.5]. While the conceptual model identified during the analysis
describes conceptual objects unrelated to so ftware terminologies , the OO model describes the computational
software objects needed to implement the functionality of the model instead. The mapping between objects is
rarely or never onefitofione. The system is decomposed into (complex) software objects of relevant granularity,
some perhaps mapping to existing refi usable components. Detailed descriptions consisting of message protocols
(opatterns of cattribues mndomethodso § 6 pu bl i ¢ bat thealevel of undivdidpal objects
should be specified [WirfsBrock90, p. 10,28].

Example 2.2 i i To implement a design for the notification mechanism described in example 2.1 the
conceptual model must be transformed into a model of collaborating software objects. Model objects such as
User, Subscription, Notification , Message, Formatter, and Delivery may map directly to similar software objects,

or types, e.g. to User, Subscript ion , Notification , Message, Formatter , and Delivery software
objects, respectively . A software object may be designated as abstract, which will require specific
implementations for usage as well . For example, the Delivery object could map to a Delivery interface with
specific implementations such as EmailDelivery , SMSDelivery , and SNMPDelivery , which in turn could

require abstract Message, Formatter , and Subscription types as well. Coarse or complex model objects
may require numerous software objects or even libraries to represent the functio nality . For example, an object
doubling as both a Scheduler and Processormust implement a Scheduler and a Processor interface . The UML

Class diagram below shows such a scenario.

«interface» «interface»
Scheduler Processor
+ schedule(notification : Notification) : NotificationRelation + process(NotificationRelation)
+ getScheduledNotifications() : java.util.List<NotificationRelation> + getProcessedNotifications() : java.util.List<NotificationRelation>
N A

«implementation class»
Schedulerimpl

- scheduled : java.util.List<NotificationRelation>
- processed : java.util.List<NotificationRelation>

Schedulerimpl()

+ schedule(notification : Notification) : NotificationRelation

+ getScheduledNotifications() : java.util.List<NotificationRelation>
+ process(relation : NotificationRelation)

+ getProcessedNotifications() : java.util.List<NotificationRelation>

Conversely, certain model objects may not even require a structural counterpart such as a class/object; this

could be the case with an Event object, which could be defined as the executing context creating and

scheduling a Notification object simply using method invocation s. On the other hand, s ome software objects
may have no direct conceptual counterpart , as for instance a NotificationRelation object expressing a
specific relationship between a Notification scheduled for later processing using a certain Delivery type.

Gunni Rode http://www.rode.dk/thesis Page22 of 197

¢19{L{

EVALUATING SOFTWARE DESIGN PATITERMSORAND BACKGROUND al {¢owof
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

Once the software objects have been identified, their responsibilities and relationships must be established and

described (0f i ne desi gnAsgeerainthd WL idiagyad pbove, the Scheduler object could have a

schedule(Notification) method as well as a getScheduledNotifi cations() method to return the
Notification objects scheduled by that Scheduler contained in NotificationRelation objects. Similar,
the Processor could have a process(NotificationRelation) method as well as a
getProcessedNotifications() method to return re lations processed by that Processor . Here, the

Scheduler and Processor are the same type (and instance), but that is not a requirement . The design will not
only identify the attributes and methods, but also the overall internal logic of the methods . Finally, depending
on the demands at hand, the mechanism could be designed as a standalone library used in a large OO systems,
or as part of the system itself (61 ar ge de s i g nf degignadnas & lébrary,tit \}caulll be used in other

design scenarios, but this raises the need for a good, durable, and flexible design even more y

The practical procedures on how to execute the design phase, i.e. how objects and responsibilities are identified
as well as how the design is presented, are typically described by OOMused combined with personal experience,
for example using the Responsibility Driven Design process suggested by Wirfsfi Brock et al. [WirfsBrock90].
However, Fowler states that it can be hard to distinguish between the analysis and design phase in practice
[Fowler97]. Wirfsfi Brock et al. do not even label the initial phase as the analysis phase, but as part of the design
phase. Nevertheless, the design phase requires the specification of concepts nonex istent in analysis, such as the
logic of object methods or the types of the att ributes of an object or class [SE], as for example a name
attribute of the User class identified in example 2.2 having the type java.lang.S tring . Furthermore, the
design may seem closely related to the implementation , and in particular OO Programming Languages (OOPL)
because it will typically be represented by diagrams such as UML Class and ObjectDiagrams sharing similar
notions [UMLOJ. The design does not require an OOPL for implementation, but an OOPLwill facilitate the

implementation considerably, though the variant of the OO paradigm supported by it will also play a role.

The choice of programming language is import ant already in the design phase. The language may implicitly
affect the design if it affect s the design patterns used. In [Norvig96], Norvig differentiates between three types

of programming relevant for the design: a) Programming In a language; b) Programming Into a language; and c)
Programming On a language[Norvig96, p.58]. In case a), t he design is constrained by what the language offers .
In case b), the design is done independently of any language, then implemented using features available in the
chosen language. In case c), the design and language meet half way. Norvig explains this as programming into
the language you wish you had; a language built on the actual language chosen Ideally, patterns represent case
b). Unfortunately, the choice of programming | anguage may already have been made, for example based on

client demands, and this may force a given type of de sign and programming relation.

2.5.1. Patterns

In our experience, real fiworld problems seldom map to software objects representing real filife entities, but
rather to programmatic abstractions, i.e. objects of varying granularity , of required functionality. = As stated,
identifying the objects, their relationships, and interactions is no trivial matter . This is where software patterns

come in handy, because they provide solutions to many of the problems faced while designing such objects (or

Gunni Rode http://www.rode.dk/thesis Page23of 197

¢19{L{

EVALUATING SOFTWARE DESIGN PATITERMSORAND BACKGROUND
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

al {¢owQ{

0 c 0 mp 0 nea giverd pattern has already identified a set of objects, relationships, and respo nsibilities
required in a given scenario. The knowledge represented by the patterns can be adapted and utilised by the
designer yielding familiar variants of already well fiknown scenarios. Chapter 3 provides a thorough introduction

to pattern theory , not necessarily related to OO .

Patter ns can describe solutions to various areas and the pattern concept originated within the field or
architecture . According to Vlissides, a common misconception is that software patterns are just for OO design
and implementation , but patterns can be applied in numerous areas [Vlissides97 i.7]. Furthermore, i t is
commonplace that any pattern related to design , software or otherwise, is dubbed design pattern. However,
identify a

[LeaOQq, i. 3]. In accordance with this,

according to Lea, within computer science, the term design pattern reflects a categorisation to
specific range of patterns related to the design of software systems
Buschmann et al. suggest a pattern taxonomy that categorises patterns pertaining to design a s architectural
patterns, design patterns, or idioms depending on their range of scale or abstraction [Buschmann96 p.12-15].

Others, for example Hohmann [Hohmann9q, extend the taxonomy to include analysis patterns as described by

Fowler [Fowler97]. Table 2.3 illustrate s the extended and slightly modified taxonomy used in this thesis.

Table 2.3 fi Pattern taxonomy

Category

Description

Target

Architectural Patterns

An architectural pattern expresses a fundamental structural
organisation schema for software systems. It provides a set of
predefined subfisystems, specifies their responsibilities, and
include rules and guidelines for organising relationships
between them [Buschmann96 p.12].

Entire (subfi) systems,
applications, and
frameworks

Analysis Patterns

An analysis pattern reflects the conceptual structure s of
business processes rather than actual software
implementations [Fowler97, p.XV].

Domain and Business
Object Model

Design Patterns

A design pattern provides a scheme for refining the sub i
systems or components of a system, or the relationships
between them [Buschmann96 p.13]. It does so by describing
communicating objects and classesthat are customised to
solve a general design problem in a particular context
[Gamma9s p.3].

Microf architectures
within sub fi systems or
components

Idioms

An idiom is as a lowfi level pattern, specific to a particular
programming language that describes how to implement
particular aspects of components or the relationships between
them using the features of the given language [Buschmann96
p.14]. An implementation of a design pattern that is unique to
the language chosen is also considered an idiom in this thesis.

Classes, Objects, and
Methods

Architectural patterns have large design granularity and are thus used early in the design phase

. Analysis

patterns are related to the domain and business object model of the system, if any , while design patterns can be
used throughout the entire design phase. Though design patterns target subfisystems, they are only used to
define specific and encapsulated functionality within the systems. Hence, the granularity of analysis patterns if

often larger than design patterns. Idioms have fine granularity and are closely related to the implementation

phase. This is illustrated in figure 2.1 on page 13. Design patterns (indicated with the grey row in table 2.3) are

Gunni Rode http://www.rode.dk/thesis Page24 of 197

¢19{L{

EVALUATING SOFTWARE DESIGN PATITERMSORAND BACKGROUND al {¢owQ{ ¢l 9{L{
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

the category of pa tterns evaluated in this thesis, and unless explicitly stated otherwise, the term design pattern

as used in this thesis indicates this category of software patterns.

2.5.1.1. Architectural Patterns

Patterns categorised as architectural express fundamental structural organisati on schemas for software systems.
They have large granularity and their introduction into the early stage of the design phase will greatly influence
the system, includin g the detailed design of sub fi systems and how different parts collaborate and communicate

[Buschmann96 p.25-26]. Architectural patterns are still only applicable for a given scenario and do not
represent a complete software architec ture. Hence, several patterns may need to be applied to form the entire
system. As is the case with design patterns, architectural patterns may be classified according to their overall
purpose, for example as Adaptable Systems, Interactive Systems, or Dist ributed Systems [Buschmann96 p.26] .
Buschmann et al. also suggest a number of patterns, known as the OPOSA patterns, for instance the
architectural Modelf Viewfi Controller Pattern [Buschmann96 p. 125], which we have used extensively in the

design of numerous applications?.

Example2.3 I TThe notification mechanism described in example 2.1 on page 21 can be designed as a
standalone library, or even framework allowing for customisation in form of an API. It is reasonable to assume
that Users, Subscriptions, scheduled Notifications, and Messages must be serialised to a perhaps permanent store
to handle identification of pre fiexisting users and subscriptions, application shutdown , and refideliveries. The
Layers [Buschmann96 p.31] architectural pattern suggest to divide the architecture into layers dedicated to

different tasks, for example a database layer handling the persistence of the objects and a layer handling t he
application logic . An API can by it self be considered a variant of the Layers pattern [Buschmann96 p.46] .
Fowler identifi es specific variants of the Layers pattern, for example Two i Tier Architecture [Fowler97, p.240]

corresponding to the scenario in this example y

While architectural patterns can have tremendous impact on the design of the software system, we for the most
part see design patterns as autonomous from their application . Of course, a design pattern such as the View
Handler Pattern [Buschmann96 p.291] is a refinement relevant to the infrastructure offered by the Model i
Viewfi Controller Pattern , and Creational 0 Gang beHavio&rcould be affected ifgthe pat t er ns
architectural Reflection Pattern is applied [Buschmann96 p.293]. However, the granularity of design patterns
and their general versatility makes them useful and relevant in many different architectural contexts, for

example the oeverfiapplicable 6 Iterator [Gamma95 p.257] and Decorator [Gamma95 p. 175] pattern s.

2.5.1.2. Analysis Patterns

At the core of many Information Systems (IS) is the business object model that do represent real fiworld entities,
for example a mapping of a company to a Company object. The business object model is said to represent the
domain of the system. Hence, the business object model is often closely related to the conceptual model

constructed in the analysis phase, but it is often just a relative small part of the entire system. H owever, the

2The 0POSAG pattern system contains architectur al patterns, design

Gunni Rode http://www.rode.dk/thesis Page25 of 197

EVALUATING SOFTWARE DESIGN PATITERMSORAND BACKGROUND al {¢owQ{ ¢l 9{L{
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

business object model is a truly pivotal part because it effectively defines the system behaviour: instances of
model objects are to be manipulated by the system while adhering to the business rules, thus defining the
overall behaviour. Because a well fi designed business model is so important, patterns have even been developed
targeting the domain specifically. Fowler presents a comprehensive set of analysis patterns targeting reusable
parts of business object models [Fowler97], some even at a granularity level corresponding to architectural
patterns as illustrated with the Two fiTier Architecture [Fowler97, p.240] pattern in example 2.3. However, a
business object model cannot stand by it self, or may not even be utilised in a design. The total functionality
required to manipulate the business object model, directly or indirectly, will in terms of objects vastly out
number objects in the model. For example, in Internet applications auxiliary objects are required to handle of
incoming browser requests, security, logging, persistence of data, errors, rendering, etc. Such objects rarely
have realfiworld counterparts . Examples could be a Logger object to log diagn ostic messages; a Request
object to represent input to the application; or in the case of example 2.2, a NotificationRelation object.
Even if a system does not use a business object model as such, it will always have a core functionality that
requires many auxiliary objects with additional functionality. Hence, the design of business system is not just
about designing the business object model, but naturally about designing the entire system . The use of analysis

patterns does not exclude the need for design patterns.

2.5.1.3. Design Patterns

The design pattern categorisation is almost directly based on t he daiaitiogof defign patterns 6
The precise definition used in this thesis is shown in table 2.3. The 0Gang of FGamma®ggreaat t er ns [
collection of patterns targeting the domain of design problems closely related to pragmatic problems found in

general OOdesigns. Gamma et al. define design patterns as [Gamma95 p.3]:

Descriptionsof communicating objectsand classesthat are customizedto solve ageneral

design problenin a particular context

Gamma et al. further explain that the domain of design pat terns is describing concepts and structures beyond
individual objects and classes up to the granularity level of refinement of OO subii systems. Algorithms are not
considered a pattern by this, or other , definitions ; they solve computational problems, not de sign problems. This
definition of design patterns is roughly equivalent to the domain of the design pattern categorisation described
by Buschmann et al. [Buschmann96 p. 13], except that Buschmann et al. do not explicity mention OO . Our
definition implies an overall OO domain . Borchers [Borchers99 p.2] offers a broader definition that does not

require classfibased languages, or even a specific domain:

A software design pattern is generally considered to h@oaen solution of a recurring
software engineering problerthat balances theompeting design constraints optimalfgr a

certain type of situation

This broader definition implies the choice of pattern has consequences. This is an important aspect of patt erns
as explained in chapter 3. Asthe 6 Gang of F o ware évalpated it this thesis, we see no reason not to

use the 0Gang ofHEoouep designtpanterns both twresshuralsbe t he 0G

Gunni Rode http://www.rode.dk/thesis Page26 of 197

EVALUATING SOFTWARE DESIGN PATITERMSORAND BACKGROUND al {¢owof
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

the category of patterns targeting the same domain. Many other commonly used design patterns have been
published as well, for example the 6POSA patterns® [Buschmann9§. The problems design patterns address arise

more frequently than issues purely related to the business object model as targeted by analysis patterns.

Example2.4 T TIn example 2.2 on page 22, we identified the need for an abstract Delivery type with
concrete implementations representing different means of delivery mechanisms, such as EmailDelivery
SMSDelivery , and SNMPDelivery to deliver messages via email, SMS, or the Smple Network Management
Protocol (SNMP), respectively. The design must ensure that only the proper types of Message objects will be
delivered using a given delivery mechanism; that the messages will be formatted to a representation suited for

such a delivery; and that additional means of delivery could fairly easy be added &but how?

A designer familiar with the 0Gang of Fourdé patter
[Gamma9] p.87] and Factory Method [Gamma95 p.107], and perhaps the Singleton [Gamma95 p.127] and
Template Method [Gamma95 p.325], design patterns could be utilised here. The Abstract Factory pattern can
be used to ensure that the Delivery and Formatter types used together are to correct ones, making use of
the Factory Method to defer the actual creation elsewhere, which also allows for easy introduction of new
Delivery and Formatter types. The Singleton pattern can be used to ensure that th e notification mechanism
creates Delivery and Formatter objects in a uniform way not breaking the loose coupling offered by the
factory patterns by ensuring that only a single factory is available . Finally, if the notification mechanism is
designed as a library, the Template Method pattern can be used to define hooks in various objects that the

client can override to add additional functionality or means of delivery Yy

2.5.1.4. Idioms

Buschmann et al. describe an idiom as a lowfilevel pattern , specific to a particular programming language that
describes how to implement particular aspects of components or the relationships between them using the

features of the given language [Buschmann96 p.14]. The classification is based on the work by Coplien in
[Coplien91]. We furthermore claim that any design pattern is implemented as an idiom if the specific
implementation is unique to the language . An example is a Java implementation of the Singleton pattern using

the synchronized statement to ensure that only a single instance is created. While the implementation can be
considered a Java idiom, the abstraction is still a design pattern. This indicates a closer relation between design
patterns and idioms and thus the implementation , which is illustrated in figure 2.1 on page 13. Buschmann et al.

also note that certain design patterns provide a source for idioms [Buschmann96 p.350].

2.6. Objectt Oriented Programming

The objects described in the design phase must be transferred into program code . Languages supporting an OO

paradigm will facilitate this process, for example by directly offering language constructs such as objects,

3 The Command Processor Buschmann96 p.277] design pattern implemented as part of the Command pattern in section

8323 is in fact a OPOSAG6 pattern.

Gunni Rode http://www.rode.dk/thesis Page27 of 197

¢19{L{

EVALUATING SOFTWARE DESIGN PATITERMSORAND BACKGROUND al {¢owof
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

classes and inheritance . Other types of languages can be used as well, but will require more work during
implementation . The implementatio n phase is often called Object fi Oriented Programming (OOP), but OOPis
also commonly used to denote OO in general. This thesis refers to the implementation phase as OOP. More so,
Sethi describes OOP as aprogramming paradigm, where execution is normally imp erative and data is
conceptualised in cooperating and communicating objects representing logical entities [Sethi96, p.15-16], i.e.
closely related to the programming language chosen. Languages supporting an OO paradigm are called OOP
languages(OOPL)

Example2.5 T 1To implement the design of the notification mechanism described in example 2.2 on page 22 a
programming language must be chosen If the design is described using UML Class Diagramsthe conceptual
model entities are represented by classes. All User objects are thus represented by the User class, Delivery
objects by a Delivery interface, etc. A clasdibased language like Java would be the obvious choice to
transform the design to program code, because the language directly support classes and inheritance as part of
the syntax. The User type could directly be defined as class User , and a specific Delivery implementation as
class EmailDelivery implements Delivery , for example. On the other hand, if a prototype fibased
language is chosen as the programming language, the relationship between Delivery and EmailDelivery

would have to be expressed differently y

Implementation is not the last phase in the software life fcycle, but the last phase relating to the design.
Testing, deployment, and evaluation are key phases that might spawn new demands, which in turn may cause

the development cycle to re fiiterate .

2.6.1. Objectt Oriented Programming Language

Ideally, the relation between the design and implementation should be in form of Programming Into a language

as described by Norvig [Norvig96, p.58], i.e. the design should be designed independently of any programming
language (see section 2.5). A programming language that has built fiin support for an OOP paradigm is an obvious
choice to use when the design must be implemented, because such languages direct ly support the object notions
of objects, encapsulation, information hiding, polymorphism, and in case of class fibased languages classes and
inheritance [SEJ WirfsBrock90, p.10]. In short, most of the concepts from the concepts presented in section 2.1,
which Java 6 does. Below, table 2.4 offers a quick comparison of some of the more interesting features found in

C++, Smaltalk, and Java 6 based on [Gamma95 Gosling05 Stroustrup91].

Table 2.4 i Comparing C++, Smalltalk, and Java 6

Language | Paradigms Type System |Example Features Implementation

C++ Hybrid, Classfi based, Strong, Static Templates, Multiple Inheritance, Static (RTTI),
Imperative, Procedural Overloading, Overloaded Operators | Compiled

Smalltalk | Pure, Clasgibased, Strong, Dynamic | Duck Typing, Inheritance, Runtime,
Imperative, Reflection Overloading, Overloaded Operators | Bytecode, JIT

Java 6 Hybrid, Classfi based, Strong, Static Gererics, Inheritance, Interfaces, Runtime,
Imperative, Reflection, Overloading, Dynamic Proxies, Bytecode, JIT
Concurrent Annotations

Gunni Rode http://www.rode.dk/thesis Page28of 197

¢19{L{

EVALUATING SOFTWARE DESIGN PATITERMSORAND BACKGROUND al {¢owQ{ ¢l 9{L{
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

Other types of languages can be used as well to implement a design, though not as easily. For example, a class fi
based design implemented in a language not supporting classes must utilise, or even invent, means to represent
classes and inheritance. This corresponds to Programming On a language [Norvig96, p.58]. Programmatic
features must be introduced to support the requirements of the design. OOP languages will be easier to use in

conjunction with design pattern s as well because design patterns build on the fundamental OO concepts.

2.6.2. Patterns

If design patterns were utilised in the design phase, the patterns will supply canonical implementations or at
least examples on how to implement the required functionality. = As Gamma et al. already note, the choice of
language will affect the pattern application because the language will ultimately decide what can and what
cannot be done (easily) in light of supported programming paradigms [Gamma95 p.4]. In case of a Programming
In a language or Programming On a language relation between the design and programming language [Norvig96,
p.58], d esign patterns can help establish wanted features . That is, to avoid limitations of the implementation
language [Norvig96, p.4] . However, the pattern examples must be modified to the language chosen and to the
scenario at hand, which may raise issues in case the language does not support features utilised in the examples
or the problems inherent to the scenario . We have already established that Java 6 supports practically all
concepts from section 2.1.1. Still, the concepts do not describe all specific programmatic features us ed in the
examples, such as multiple inheritance in C++ or codeblocks in Smalltalk. The Java 6 implementations must find

alternative ways to implement the desired functionality.

The patterns used may also reflect part of t he aut hor&s appr oac,tor éxampl©te tdoe vel op men
important principles for OO development defined by Gamma et al. that are listed in section 2.1.2 on page 18: 1)

program to an interface, not an implementation [Gamma95 p.18]; and 2) favour object composition over class

inheritance [Gamma95 p.20]. By applying the o6Gang of Fourd6 patterns, thes:¢
developed source code. By repeatedly usingthe 6 Gang of Four 6 patterns, these princi

the developer to core principles that will be applied elsewhere in the design process as well.

The knowledge represented by some design patterns can be implemented as reusable components. The process
of implementing patterns as reusablec omponents is called Ocompone@dmndutdéht i ond by
This is discussed in chapter 4. Pattern components make the implementation phase much easier, but also fixate
the behaviour to the functionality available. Certain design patterns are so u niversally applicable that
programming languages offer implementations of them as part of the language or its core libraries . For example,
it is widely known that Java has builtfiin support for the Iterator, Observer, and Proxy patterns. The
java.util.lterator <E> interface describe s the Iterator pattern functionality as understood in Java with
numerous standard implementations in the Java Collect ions Framework®. Iterators in Java, for example, are
defined to fail immediately in case of concurrent modification, thus addressing , but fixating behaviour only

discussed in [Gamma95 p.261]. Additionally, any class implementing the ja va.lang.lterable<T> interface

4 See http://java.sun.com/javase/6/docs/technotes/guides/collections/overview.html

Gunni Rode http://www.rode.dk/thesis Page29 of 197

http://java.sun.com/javase/6/docs/technotes/guides/collections/overview.html

EVALUATING SOFTWARE DESIGN PATITERMSORAND BACKGROUND al {¢owQ{ ¢l 9{L{
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

must return an iterator, which can be used directly in the forieach loop introduced in Java 5. The

java.util.Observer interface combined with the java.util.Observable class describesthe functionality

needed to implement the O bserver pattern, but is in our experience rarely used . Perhaps because it utilises

deprecated collection types ; that the default implementation is too simple ; or because developers prefer unique

method names to identity different types of events . We do not think it is unreasonable to consider that poor

implementations may cause developers to become biased towards not using a pattern at all or at least in the

given language. As a side note concerning the Observer pattern , the Java thread notification model d escribed by

the wait() and notify() methods in java.lang.Object can be viewed as a variant of it. Finally, t he

java.lang.ref lect .Proxy class combined with the java.lang.ref lect .InvocationHandler interface

are an advanced implementation of the Proxy pattern t h a't exploits Javadshnhanmfinterecti on me

totally different from the canonical implementation supplied in[Gamma95 p.210-215].

A programming | anguage should be chosen fr omecettheentiadlevi ce ot |
design has been established. In reality, the choice is often made beforehand. The regular usage of a

programming language supporting certain design patterns will affect the way the developer thinks of the specific

design patterns. It may ease the development process, but it may also fixate how the developer perceives

pattern behaviour. The choice of programming language is therefore important to establish as early as possible .

2.7. Summary

By abstracting out knowledge and encapsulating it within objects, the OO approach to software design
attempts to manage the complexity inherent in real fworld problems. Identifying the proper objects, their

relationships , and collaborations is the key to a successful design of any OO system.

Objectfi Oriented analysis (OOA), design (OOD), and implementation (OOP)is part of OO development and the
software lifecycle for OO systems The analysis develop s the software engineering requirements and

specifications , often expressed in form of conceptual object model . The design must define the software

objects and collaborations forming an OO model of a software system to implement the identified

requirements. Compared to other forms of software development, the design phase is larger, emphasis ing the
need for good and durable designs even more. The analysis determines what must be built; the design
determines how it should be done. The implementation must implement the design using a programming
language. A programming language that has built fiin support for an OOP paradigm (OOPL)will be easier to use,
for example C++ and Java supporting class fibased programming, but other languages can be used as well.
Different OO methods (OOM)can be used to guide the design and development process, offering procedures
and principles to f ollow within the realm of OO development . A given method may dictate that the development

phases may be refiiterated and/ or overlapping.
Sditware patterns can be used as a tool in the design and implementation process regardless of the OOM

chosen, because we view patterns as orthogonal to the OOM used in many respects. Different pattern

categories may be utilised in different phases of the design . Architectural patterns have large design

Gunni Rode http://www.rode.dk/thesis Page30of 197

EVALUATING SOFTWARE DESIGN PATITERMSORAND BACKGROUND al {¢owQ{ ¢l 9{L{
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

granularity and are thus used early in the design phase, while design patterns can be used throughout the

entire design phase . Analysis patterns are related to the business object model , or domain, of the system.

Idioms are closely related to the implementation phase. Thed Gang of Four é patterns are cl a
patterns. Regardless of the OOM chosen, UML is often used to model the design , including pattern

implementations , visually. The strength of patterns is that they represent well fiproven solutions to commonly

known and re fioccurring problems based on empirical kn owledge, thus aiding and facilitating the design

process. Several languages havebuilt fiin support for commonly applied patterns , such as the lterator pattern

in Java, which makes the implementation and usage easy , but may also fixate pattern behaviour and affect

the way the developer perceives the patterns in question. This is an indication of patterns and programming

languages influence each other
This thesis investigates t he dasddlzedlyy Ganima EtaluAsthe desig pajtertnspat t er ns

build upon OO, the fundamental OO concepts must be understood. We adapt OO concepts identified by Gamma

et al. because they are inherent to the pattern application and very well suited for Java environments

Gunni Rode http://www.rode.dk/thesis Page31of 197

EVALUATING SOFTWARE DESIGN PATITERMSORAND BACKGROUND al {¢owQ{ ¢l 9{L{
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

Patterns

A pattern foreshadows the product:
it is the rule for making the thing, but it is also,
in many respects, the thing itself
I 1Jim Coplien
Christopher Alexander originally described patterns and pattern languages as a mean to improve twentieth
century architectural design methods and p ractices. Patterns have since been shown to be applicable in many
other areas as well, perhaps most notably within the field of computer science and especially manifested as
software design patterns related to OO development . This chapter presents the ideas set forth by Alexander and
the connection to software design patterns . We describe the core pattern concepts, such as pattern languages,
entries, qualities, forces, descriptions, and formats, which must all be understood in order to understand what a
pattern represents, and hence to perform a meaningful evaluation . We explain how the general pattern
concepts relate to software patterns and in particular to OO andthe 0 Gang of Four.dNedlsos
presentt he o0Gang of Four 6 pragtheeventyicsgseéemoGangabh Four o
explain how the patterns are classified and related. Throughout this chapter, we try to make the theory
concrete by supplying several practical examples, and we present our views on many of the discu ssed topics.

This wildl hel p understand the practical application

3.1. Christopher Alexander

Software design patterns are based on the ideas set forth by Christopher Alexander , a licensed contractor and a n
architect, who introdu ced and explained patterns and pattern languagesin [Alexander77; Alexander79]. These
texts were preceded and followed by a rather large number of others on closely related topics . We only give a
short (and far from complete) introduction to Al e x a nrdiraro@sswritings, primarily based on [Appleton97;

Appleton00; Lea93 unless specifically noted otherwise .

According to Lea, Alexander postulates that there is something fundamentally wrong with twentieth century
architectural design m ethods and practices; a certain Quality Without A Name (QWAN) is missing from
constructed environments. QWAN cannot be summarised briefly and no singe term exist to convey or capture its
meaning, but Alexander explains QWAN using partial synonyms closely related to the human impact on the
design processlike freedom, life, wholeness, and harmony [Lea93. Consequently, constructions do not satisfy
the real demands of users and society, because the generated environment does not have a coherent form ,
thereby failing the basic requirement that design and engineering improve the human condition. His ultimate
goal is to build viable living structures for the people who live and work there. To remedy these shortcomings,
Alexander suggess letting the inhabitants of the towns and buildings themselves take part in the design and
practices using easily understandable patterns and pattern langua ges. This will ensure that far more inhabitable
constructions will be made 0 structurally and spiritually dthat will have that certain nameless quality w e should

strive for , thus reaching a coherentform. Al exander ds patterns ar gardhiteguregn patterns

Gunni Rode http://www.rode.dk/thesis Page32of 197

EVALUATING SOFTWARE DESIGN PATITERMSORAND BACKGROUND al {¢owQ{ ¢l 9{L{
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

Alexander never gives a formal definition of a pattern or a pattern language [Lea93, but offers the following

explanation [Alexander79, p.247]:

As an element in thereal world, eachpattern is arelationship between a certaicontext a
certain system of forceswhich occurs repeatedly in that context, and a certgpatial
configuration, which allows these forces to resolve themsekssn element of languagea
pattern is an instruction which showshow this spatial configuration can be used, over and

over again, taesolve the given system of forcegherever the context makes it relevant.

The notion of a pattern is thus two fifold. Firstly, a pattern is an abstraction of practical experience a nd basic

knowledge; it is not invented as such, but discovered (or mined), and Alexander even states that some patterns

are universally known [Alexander79; Lea93. The idea is to identify the conflicting forces within a given context,

and then find a solution that brings them into harmony. A pattern not only identifies a solution, it also explains

why the solution is needed [Appleton00]. Applying a pattern is the process that generates such a solution, but

variant solutions may be generated. Alexander therefore emphasises letting the inhabitants (e.g. endfiusers)

take part in the design and stresses that human interaction is an absolute necessity in applying patterns . In

Al e x a sidbmain®f designing and constructing bui | di ngs and townsr (Ooebghhoplahoodsgd
a context could be an entire town or just a house . Conflicting forces could be the known problems related to

building, say, a house. This implies that patterns may be applicable at different levels in the design and

therefore have different granularity , ordered in a hierarchical structure.

Secondly, the solution must be recorded, or described, so it can be reused in similar contexts . Alexander
suggests a format to describe patterns in a literary nonfi mathematical form having the elements Name,
Example, Context, Proble m, and Solution [Lea93. However, not everything that can be described using a
pattern format can be considered a pattern. A pattern (entry) must ideally have a set of properties to ensure its
quality, namely Abstraction, Composibility, Encapsulation, Equilibrium, Generativity, and Openness
[Appleton00]. The pattern must also describe the forces that it balances . If well written, each description
describes a whole that is greater than the sum of its parts [Lea93. The presence of these properties combined
with all the required pattern elements is what makes pattern entries more than just principl es, heuristics, rules,
or algorithms [Coplien, i.8-9; Lea93. On the other hand, a pattern description will often contain the former,
i.e. heuristics, etc ., and use them as part of the pattern [Appleton00]. However, pattern descriptions leave
room for interpretation. As Alexander desires living and constantly evolving architectures, patterns may be

applied differently in equivalent contexts to reflect subtle changes . In [Alexander77], he writes:

Each patterndescribes a problerwhich occurs over and over again in our environment, and
thendescribes the core of the solution to that probleim such a way that yocan use this

solution a million timesover,without ever doingt the same way twice

The idea of wusing de socBreispt i&sradscia sohveresivenroblem is nothing new and
cannot be attributed to Alexander, but Al exander Vi ews patterns as 0a timeles

[Alexander79]) rather than merely offering factual descriptions on how to solve various design problems. In

Gunni Rode http://www.rode.dk/thesis Page33of 197

EVALUATING SOFTWARE DESIGN PATITERMSORAND BACKGROUND al {¢owQ{ ¢l 9{L{
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

Danish, there is evena speci fic wor d to d ewithim vatioas ehidgieesirtg arPas,astéli,i c e s 0
meaning (an) assist, aid, or (a) stand by in form of some sort of manual describing optimal solutions to various

technical problems °.

A pattern description can be an entry in a pattern language. As such, entries are considered elements of a
language. It is therefore essential their repre sentation is easily understandable and recognisable so the
described pattern can be applied in other applicable contexts. A pattern language is comprised of a fixed
number of such pattern entries, each describing a well fiproven solution to a reoccurring pro blem within a
specific context inside a larger domain. Furthermore, a pattern language should describe its context in full, but
different languages can use the same (subfi) set of patterns, combined and collaborating in different ways and
perhaps in some order, depending on the context. Combined, the patterns can solve a more fundamental
problem that is not explicitly addressed by any individual pattern [Appleton00; Lea93. A pattern language
describing the entire dom ain is said to be complete . Mathematically , to our knowledge, no pattern language has
ever been proven complete, which would also seem contradictory to the id ea of patterns being discovered since

based on practical experience.

Alexander constructs a pattern language containing 253 pattern entries of varying granularity , from regional
patterns down to patterns pertainin g to some small part of a house® Alexander claims the entries form a
complete architectural pattern language for his domain [Alexander77; Lea93. From Al e x a n ldnguages
smaller languages can be constructed using several of the contained patterns to describe subficontexts. For
instance, t o construct a pattern language to describe a given house, some of these patterns must be used, for
example patterns describing light, transitions, colours, surfaces, etc ., while these and others would be required
to describe an entire region. The endfuser, i.e. the inhabitant, help decide which patterns to include i n the
language to construct the house [Lea93. However, during several experiments using his pattern language,
Alexander and others realised that it did not really work as well as intended in practice; the pattern language
alone did not succeed in constructing coherent form because of too many unknowns, for example the order in
which to apply the patterns . Alexander therefore introduced morphogenetic sequences, or just sequences (see
[Alexander05b]). A morphogenetic sequence is a pattern language that adheres to a certain order of unfolding ,
i.e. the order in which patterns are applied one after another . A sequence causesa repeatable coherent order
to unfold, which also contains the patterns and therefore is well b ehaved as an environment [Alexander05b].
Alexanderds, as of yet, final modification to pattern languages is generative codes [Alexander05a]. Generative
codes are also morphogenetic sequences, but include all information needed for practical implementation,
especially concerning human interaction, as well as practical, legal, and procedural details. Alexander states

that w ith out the use of generative codes, the practical work cannot be done successfully.

51t is not that uncommon to hear a Danish engi stiiefrort utrhiesd pdreovbel | eonp?edr

But there often is din form of a software design pattern.
5 Alexanderds patterns can be viewed online at http://www.patternlanguage.com/leveltwo/patterns.htm

Gunni Rode http://www.rode.dk/thesis Page34 of 197

http://www.patternlanguage.com/leveltwo/patterns.htm

EVALUATING SOFTWARE DESIGN PATITERMSORAND BACKGROUND al {¢owQ{ ¢l 9{L{
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

3.2. Sotware Patterns

While Alexander describes patterns to supply solutions to problems related to his domain of designing and
constructing buildings and towns, patterns and pattern languages can be, and have been, applied elsewhere,

especially within the field of Computer Science.

Around 1987, Beck and Cunningham were among the first to apply the
They constructed a pattern language containing five pattern entries describing how to design simple Graphical
User Interfaces (GUIs)in Smalltalk, targeted at no vice Smalltalk programmers [Beck87. The patterns were not
only related to design, but also to Human Computer Interaction (H CI) in the sense that they focused on the
usability of the resulting design . The patterns had varying granularity and were hierarchical related , yielding an

order of application.

In 1991, Jim Coplien published a book containing a large collection of C++ idioms[Coplien91]. The book does not

explicitly use the term pattern , but it was published years before the patterns became popular within computer

science. However, the idiom classification of design patterns from the taxonomy listed in table 2.3 seems quite

influenced by his work. In the early nineties, various people now considered pattern notables began collecting

and discussing software patterns, but software patterns first became truly popular after t he o0 Desi gn Patterr
book by Gamma et al. was released in 1995. The four aut hor s became known as the 0Gang
patterns presented in the book as The bDesigo Batterngd book notFomlyr 6 desi g
describe twenty fithree software design patterns describing communicating objects customised to solve a general

design problem in a particular context [Gamma95 p.3], but also discuss the overall OO concepts and themes the

patterns express (as explained in section 2.1.1 and 2.1.2). Thed Ga n g o0 fpattéfrs havedlong since become

famous and used extensively within the OO community . Many other books on patterns have since been

published, far too many to give a meaningful and com prehensive list, and there are conferences dedicated to

patterns held regularly, such asthe Pattern Languagesof Programs (PLoP)conferences. The O0POS#hy book
Buschmann et al. [Buschmann96 SchmidtO0] are also widely used; Buschmann et al. formulated the design

pattern categories commonly used to this day, i.e. the architectural patterns, design patterns, and idioms

categories from table 2.3. Besides books and conferences, online pattern repositories such as [PPR and

[Hillside] also provide much information regarding software patterns.

It is important to state that software patterns are not restricted to software desig n patterns, but it is hard to

estimate how influential Al exander 8s wor k h akinds mfepattern 0amd irtividuél ecollections,

whether intentionally or not . For example, manyof Copl i ends C++ i di oms while8eclhand real |y
Cunningham directly references Alexander and claims that their five patterns form a complete pattern language

[Beck87. Though not to the same extent as Beck and Cunningham, Gamma et al. clearly state that they build on

the work by Alexander [Gamma95 p.2-4], and Buschmann et al. relate their work to Alexander as well

[Buschmann96 p.360,414; Schmidt00, p.505-526]. But one thing is saying so, another thing is doing so .

Alexander 6 s wor k softwaeet(design) tpatterns is debated heartily within the community , also with
respects to the 0Ga(segforefampfed BRRA Ompthet other hamds pattern related concepts

originating in computer science have also emerged, such as The Rule of Three and Proto Patterns as explained in

Gunni Rode http://www.rode.dk/thesis Page35of 197

EVALUATING SOFTWARE DESIGN PATITERMSORAND BACKGROUND al {¢owQ{ ¢l 9{L{
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

section 3.8.3 on page 49. Furthermore, a s discussed insection 3.6, efforts are also being made to formalise
pattern descriptions and include patterns as language features or implement them as reusable components in

accordance with the principles in OO. This approach to design patterns deviates from the origina | concept
defined by Alexander in the sense that the human factor is less important in applying the patterns , but is muc h

more tangible and structured.

More recently, differentkinds of soft ware patterns have emerged osuthsi de t he
as Analysis, HCI, Organisational, or Process Patterns, used to describe other or more specialised aspects of

software engineering [Appleton]. Analysis patterns as described by Fowler are still closely related to design

[Fowler97], and are therefore in cluded in our pattern taxonomy, while HCI patterns seem quite well suited to

expand on Al e xia diffeenmt dvays thath €O8® sdesign has. This is because several verbose, but

exactingly formulated, HCI methodologies already exist, based on empirically proven design guidelines, such as

Userfi Centred Design (UCD) in which the endfi user must participate wholeheartedly in the design of the solution

[Borchers99. This is reminiscent of Alexander letting the end fi user participate in the design process. HClis very

much based on practical experiences, and because of characteristic similarities with patterns , HCI

methodologies could be expressed using pattern descriptions, especially since the metho dologies already have a

written form.

Still, software design patterns related to OO are very likely the most used kind of software patterns. People
within the software community neither accept the usefulness of individual patterns or collections, nor the need
for such a thing as software design patterns at all. OO has always acknowledged the need for meticulous analysis
(OOA) and design (OOD), but prior to design patterns, descriptions of design problems where mostly of a rather
abstract nature describing from scratch how to identify the individual parts of the system, their relationships,
and collaborations. In our view, a textbook example of this is the otherwise good book oDesigning Objectfi
Oriented Soft vii@nook @t ab jrom W90 f WirfsBrock90]. With patterns, problems of varying
granul arities have already been solved and described, giVving
the analysis and design phase. The abstraction need no longer be just focused at the individual class and object
level, but also at a higher level describing functionality, relations, and coherency traditional OO constructs
cannot. The principles are thus separated from the implementation. We think this is a key reason behind the

popularity of software design patterns.

3.3. PatternQualities

A pattern entry must ideally possessthe set of properties listed in table 3.1 to ensure the quality of the pattern ,
namely Abstraction, Composibilit y, Encapsulation, Equilibrium, Generativity, and Openness [Appleton00]. Many
of these properties have similar meaning to desirable constructs in OO, which could explain why software
patterns first became popular within this domain. As an example, consider a class. A class is an abstraction with
encapsulated responsibilities representing some equilibrium . It can be used as a component by other classes and
is normally generative in its usage. It can be implemented in different languages or may even be parameterised

with other types (openness) [Lea93.

Gunni Rode http://www.rode.dk/thesis Page36 of 197

EVALUATING SOFTWARE DESIGN PATITERMNSORAND BACKGROUND

al {¢owQ{

T UKS

aDFy3

2F C2dzNE LI GGSNya

AYLX SYSYGSR Ay Wk @I ¢

Lea even writes that patterns may be viewed as extending the definitional features of classes, and that classes

and patterns have two analogous aspects [Lea93:

I. The external, problem fispace view: descriptions of properties, responsibilities, capabilities, and

supported services as seen by the external context; and

II. The internal, solution fispace view: static and dynamic descriptions, constraints, and contra cts among

components known only with respect to a possibly incomplete external view (interface).

The need for these qualities implies that there is no guarantee that a given problem can be solved using a

pattern . Not every solution can be captured in a pattern, and not everything described by a pattern entry can be

considered a pattern [Hohmann9g. Accordingly, a class will only expressthese properties if well designed.

Table 3.1 fA

Pattern qualities

Name Description Computer Science
Abstraction A pattern represents a general abstraction of | Objects are programmatic abstractions of
knowledge and experience within a given functionality, real fiworld or otherwise. A pattern
domain [Lea93. The use of natural abstraction is a higher fi level abstraction
language, diagrams, illustrations, etc., is compared to what can be described by
required. programming language constructs alone. The use
of programming lan guage in examples augments
the pattern description, but the examples cannot
standfi alone.
Composibility | Patterns of different granularity are Objects share similar traits, and can be composed

hierarchically related (in a pattern system or
language), indicating a rough application
order to be adhered to wh en the patterns
are unfolded. Patterns at a given level of
abstraction and granularity may lead to, or

be composed with, other patterns
[Alexander77; Appleton00; Lea93.

to achieve complex functionality. For example, a
recurring theme in [Gamma9§ is to prefer
delegation to inheritance, which allows for
dynamic composibility .

Encapsulation

A pattern must encapsulate an independent,
well fi defined real fi world problem and
solution within a given domain [Alexander77,
Lea93.

An object uses encapsulation to e nsure that both
data and the methods that operate on the data
are correlated. Combined with information
hiding, this ensures that the responsibilities of
the objects are well fidefined. However, an
object need not represent a real i world problem.

Equilibriu m Indicates a balance between forces and The responsibilities of an object represent the
constraints that minimises the conflicts in trade fi offs made when designing it, and the
solution space identified by the pattern, and | functional ity implemented by the object
may be based on invariants and/or represents the equilibrium .
heuristics. Equilibrium provides a rationale
for each individual step in the pattern when
applied [Alexander77; Appleton00; Lea93.

Generativity When a pattern is applied, as described by Classes can be viewed as being generative as

its description, it provides the solution to a
given context thereby generating a new
resulting context, which in turn can be used
to apply other patterns, and so forth,
leading to the overall generation of the
solution to the domain in question. More

well; they support parameterised instance
construction and perhaps parameterised types
(e.g. generics and templates). Objects in
prototype fi based languages may also support
parameterised instance constructi on.

Gunni Rode http://www.rode.dk/thesis

Page37 of 197

¢19{L{

EVALUATING SOFTWARE DESIGN PATITERMNSORAND BACKGROUND

al {¢owQ{

T UKS

Table 3.1 i

aDFy3

Pattern qualities

2F C2dzNE LI GGSNya

AYLX SYSYGSR Ay Wk @I ¢

and parameterisation by other patterns, to
work together to solve a larger problem.
Realisation of the pattern should be possible

Name Description Computer Science
than one pattern may be applicable to a
given context [Alexander77; Lea93.
Openness Each pattern should be open for extension Some languages contain builtfiin support for

several patterns, and libraries are commonly used

to supply well fi proven pattern implementations
(see section 2.6.2 on page 29). Combined with

using any number of implementations, alone
or in conjunction with oth er patterns
[Alexander77; Lea93. Applying a pattern is
the process that generates a solution, but it
may generate variant solutions [Appleton00].
In theory, a pattern entry should be
implemented for each usage.

parameterised types (e.g. generics or templates)
even built A in classes may be considered open, for
example java.util.lterator<E> in Java.

If a pattern exhibits these qualities, the source code im plementation is likely to reflect them as well.

Example3.1 i iln example 2.4 on page 27, we claimed that the Abstract Factory, Factory Method, and
Singleton patterns could aid in the design of the notification mechanism from example 2.1. To add value to the
design the patterns must express the desired qualities. The Abstract Factory pattern is an abstraction of
knowledge about creating objects without explicitly knowing their type ; its description contains text,
illustrations, as well as program code (Abstraction). The pattern functionality is required in many different type s
of flexible realfiworld systems and t he pattern encapsulates this task by providing a description o f the problem
as well as a proven solution to it (Encapsulation). The description explains the trade fioffs in using it, for
example that the pattern promotes consistency, but also that it can be hard to add new types of object to a
given factory (Equilibrium). The Abstract Factory can defer the actual creation of new objects elsewhere,
typically to Factory Method or Prototype [Gamma95 p.117] pattern implementations (Composibility and
Opennesy; as a variant, it could also choose to implement the functionality by it self, for example using
reflection in Java (Openness). Finally, Abstract Factory implementation s are often suitable as candidates for the

Singleton pattern (Generativity) Y

3.4. PatternForces

A pattern must balance opposing forces within its context t o reach a balance that implicitly will be present in
the pattern and in its application [Appleton00]. The described solution must bring the identified forces into
harmony, or the pattern is not warranted. This implies that a pattern may represent trade i offs between various

forces.

The type of forces depends entirely on the domain and context, but forces can gene rally be thought of as goals
and constraints. In computer science, the notion of force generalises the kinds of criteria used to justify designs

and implementations [Lea0Q, i.12] . According to Buschmann et al., the most important n onfifunctional forces
regarding OO development are Changeability, Interoperability, Reliability,

Efficiency, Testability, and

Reusability [Buschmann96 p.404-410], and Lea lists a set of similar forces, such as Portability, Extensibility,

Gunni Rode http://www.rode.dk/thesis Page38of 197

¢19{L{

EVALUATING SOFTWARE DESIGN PATITERMSORAND BACKGROUND al {¢owof
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

Fairness, Maintainability [Lea00, i.12], etc. More explicit functional forces are closely tied to the domain
[Appleton00; Lea0Q, i.12-13]. A functional force can be visible to the users of the syste m by means of a
particular function, or it may represent aspects of the implementation, such as the algorithm used to compute

the function [Buschmann96 p.389].

Design patterns, eg. the 0Gang of F, grinrardy expeesst nenfifurstional forces , as example 3.2
below also illustrates. As patterns are used to implement system functionality, the forces balanced in the
pattern may influence the syst em unless fully encapsulated, intentionally or otherwise. Similar, the traits of the

system will dictate the type of applicable patterns.

Example3.2 i TA set of nonfifunctional forces relevant for the not ification mechanism from example 2.1 on
page 21 could be Reusability, Changeability, and Extensibility related to the various design issues contemplated
in example 2.2. If designed as an openfi source library or API, Reusability becomes an important factor , as well
as Changeability and Extensibility to manage or add new means of deliveries or new functionality. On the other
hand, Efficiency and Fairness is not that important as long as a delivery is made eventually . As means of
deliveries, we considered email and SMS deliveries in form of the EmailDelivery and SMSDelivery

implementations . They are storefi andfiforward services, and once a message has been deliveredsuccessfully to
the gateway, nothing more can be done from the application 6 goint of view . However, other types of deliveries

could require scheduling and processing guarantees, for example the order of delivery . A delivery writing to an

event or audit table in a database is one example. Patterns used in the design of the notification mech anism
should match these forces and preferably enforce them, for example using the Abstract Factory [Gamma95
p.87] and Factory Method [Gamma95 p. 107] patterns as described in example 2.4 to ensure Changeability and

Extensibility of associated Delivery — and Formatter types.

Functional forces will be closely related to the core functionality of the notification mechanism, which is a
library for delivery of messages to subscriptions using various means of deliveries. This indicates that there will
be an overlap between functional and non fifunctional forces in this case, e.g. Fairness and Extensibility . A more
explicit functional force could be an algorithm used to correlate and concatenate related Notification

objects to be delivered in a single delivery y’

An example of an unresolved forcerelevant t o t he o6 Gang of Fourdé patterns

¢19{L{

S

Mul t i f

by Lea [LeaOQ i.12]. In general, concurrency is not an issue discussed much in the 0 Desi gn Patternso b

[Gamma9]. This does by no means implythat t he o0Gang of Fourdé patterns
taken when applying them in modern concurrent systems. For example, what is the result in case of concurrent
modification to the underlying representation used by the Iterator pattern (robustnessy, or how do we ensure

that only a single instance of a Singleton type is created in a concurrent environment ?

3.5. PatternElements

Alexanderd glescription of patterns contain s certain vital elements to ensure that it conveys the relationship

between the context and forces, and implicitly the qualities as well [Appleton00]. A pattern format , or just

Gunni Rode http://www.rode.dk/thesis Page39of 197

ar

e

faul

EVALUATING SOFTWARE DESIGN PATITERMSORAND BACKGROUND al {¢owQ{ ¢l 9{L{
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

form, is a template dictating the elements and structure of pattern descriptions. To be able to reuse a pattern
in a design, the pattern description must contain the decisions, alternatives, and trade fioffs (forces) that led to
it [Gamma9; p.6]. A wellAwritten pattern must also express the desired qualities [Lea93, and is more than a

simple recipe as Fowler explains [Fowler06]:

Recipes tend to be more particulausuallytied to a particular programming languagand
platform. Even wherpatterns are tied to a platform, they try tdescribe more general

concepts

Many different forma ts exist, some just slight variations of others, but no official standard is acknowledged

[LeaO0. However, several defifacto standards exist. Al e x a n d e r dAfexafidoan Foan, js used to describe

architectural patterns and it contains the elements Name, Example, Context, Problem, and Solution [Lea93. In

computer science, the 0 Gang of F and CanonicaGFofnsare widely used [LeaOQ Appleton], but many

other exist (for a list, see [LeaOQ PPR). For i nstance, the OPOSAO patterns are des:s
Canonical Form [Buschmann96 p.20-21], whil e the o0Gang of Four 6 osammigerofs ar e
F o u forén, surprisingly enough. All forms in some way seem to present the elements required by Alexandrian

Form, but not necessarily in, or as, their own sections. Some formats make these elements explicit, while others

do not. For example, the form used by Fowler to describe his analysis patterns in [Fowler97; Fowler03] has just

three named elements, where only the Name element corresponds to a pattern element as defined by

Alexander. Hence, different pattern formats describe di fferent elements, and elements differently, but

Appleton states that the elements from the Canonical Form should be clearly recognisable upon reading a

pattern description . The elements are Name, Problem, Context, Forces, Solution, Examples, Resulting Cont ext,

Rationale, Related Patterns, and Known Uses[Appleton00]. The naming of patterns is especially interesting. By

giving a pattern a meaningful and concise name, designers, developers, and others share a common vocabulary

(easy naming of solutions to common problems) that can be utilised in the development process , and which

extends beyond other more traditional methods [Gamma95 p.6; Fowler06].

The pattern description will be affected by th e domain targeted by the pattern. The o0Gang of Four ¢ de
patterns operate in OO environments, and OO concepts and themes utilised by Gamma et al. will be reflected in

the patterns and their application, i.e. implementation . The concepts and themes thus become important in

order to understand the patterns as a whole. However, the format used to describe the patterns can also affect

the pattern , because not all formats are appropriate for a given domain [Vlissides97, i.7].

3.5.1. dGang ofC 2 dEddrat

The for mat used by Gamma et al . in the o0ODesign Patternsod b
format, or GoF form. The Canonical Form builds on the format , and shares many elements; it can be viewed as a

generalised version of t h e nogGao f fdérmat rTlkde format is commonly used, and often used as a base for

variant forms [Fowler06]. The format is highly structured compared to the Alexandrian form of writing, which is

narrative and almost lyrical [Vlissides97, i.7]. Table 3.2 explains the general purpose of the different elements .

It also relates them to the most relevant qualities from table 3.1 as we see it.

Gunni Rode http://www.rode.dk/thesis Page40of 197

EVALUATING SOFTWARE DESIGN PATITERMNSORAND BACKGROUND

al {¢owQ{

T UKS

Table 3.2A 06 Gang of

aDFy3

2F C2dzNE LI GGSNya

AYLX SYSYGSR Ay Wk @I ¢

Four 6 (nodifted fmm rGamroad95mpett-7])

Element

Description

Quialities

Name

A concise pattern name that conveys the pat tern essence.

Abstraction

Classification

The classification of the pattern according to the two
dimensions Scope (Class and/or Object) and Purpose
(Creational, Structural, or Behavioural).

Abstraction, Composibility ,
Generativity

Intent

A short statement that answers the following questions: What
does the design pattern do? What is its rationale and intent?
What particular design issue or problem does it address?

Abstraction, Equilibrium

Also Known As Alternative names, if any. Abstraction

Motivation An example that illustrates a design problem and how the Abstraction
class and object structures in the pattern solve the problem.

Applicability In which situations can the pattern be applied? What are Abstraction, Composibility ,
examples of poor designs that the pattern can address? How Generativity
can you recognise these situations?

Structure A graphical representation of the classes and objects in the Abstraction, Encapsulation

pattern.

Participants

The classes and/or objects participating in the des ign pattern
and their responsibilities.

Abstraction, Encapsulation

Collaborations

How do the participants collaborate to carry out their
responsibilities?

Abstraction, Encapsulation

Consequences

How does the pattern support its objectives? What are the
traden offs and results of using the pattern? What aspect of
the system structure does it let you vary independently?

Equilibrium, Openness

Implementation

What pitfalls, hints, or techniques should you be aware of
when implementing the pattern? Are there language specific

Composibility, Equilibrium,
Generativity, Openness

issues?

Sample Code Code fragments that illustrate how you might implement the Generativity, Openness
pattern.

Known Uses Examples from real systems. Composibility, Generativity,

Openness

Related Patterns

Related patterns, if any.

Composibility, Generativity,
Openness

The elements listed in light grey are the elements most closely related to

pattern

implementation , i.e.

Implementation and Sample Code. As described in chapter 5, the evaluation pays special attention to these
bed in the Pamplet Goden s 6 b ook

0Gang of

elements. The f or mat as descri oDesign

element will supply source code in C++ or Smalltalk [Gamma95 p.7], because the Fourd
illustrated in these languages. Similar, the Implementation element is closely related to these languages as well,

or at least the features of the languages. The use of these languagesin the pattern description may influence

the pattern application using other languages, e.g. Java 6, because they tie the patterns to specific languages .
This is also noted by Gamma et al. [Gamma95 p.4]. As patterns are discovered in existing source code (see
section 3.8.1 on page 47), the Implementation and/or Sample Code elements may very well represent extracts

from real systems written in the same programming lan guage. Both the problem and solution may thus have

originated in, or because of, the language in question.

Gunni Rode http://www.rode.dk/thesis Page41of 197

EVALUATING SOFTWARE DESIGN PATITERMSORAND BACKGROUND al {¢owQ{ ¢l 9{L{
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

3.6. PatternFormalism

The lack of a formalised concept of a design pattern has long been a vigorously debated issue within the pattern

community (see for example [Eder98, p.3; Eden02 p.380] and much of [Hillside; PPR). It goes to the very core

of understanding, or agreeing on, what software design patterns are. Formalism is close ly related to tool support

for pattern mining, understanding, and application. The efforts to formalise design patterns intentionally oppose

Al exander s ideas of patterns | anguages and patterns expre
structural approaches [Eder98, p.3]. Practically all software design pattern formats are already much more

structured compared to the Alexandrian format. St at ed bl unt |l vy, Eden says most foll ov
treat software design patterns a s sacred cows, no less, which cannot, and should not, be formalised, while

followers of the efforts to bring structure, formalism, and tools to the pattern community are rational [Ederos8,

p.3]. In this feud, we take the middle ground. Fo rmalism can be a valuable tool to aid the practical

implementation of design patterns, i.e. componentization, tooling, and ease of understanding, while

remembering that software design patterns ideally express more than program code, i.e. part of a vocabul ary,

highly adaptable, used for teaching and u nderstanding of concepts, etc.

While formal specifications may clarify pattern functionality, we fail to see how it can describe the human
aspect in patterns and in their application, expressed in, and as a co mbination of, various pattern elements.
Strict formalisation of patterns willdl deemphasise the huma

original ideas. Vlissides agrees and writes [Vlissides97, i.4]:

In short, patterns ae primarily food for the brain not fodder for a tool. There may yet be
latent benefitin methodological or automated support, but I'm convinced it'licbey on the

cake not the cake itselbr even a layer thereof.

Even more so, as described in section 3.5, different pattern formats describe different elements and elements
differently. If formalism is to succeed, we believe it will be at the expense of variety of pattern formats. This

could pose a problem, as a single pattern format does not fit all [Vlissides97, i.7].

Baroni et al. discuss numerous OO and pattern formalisation methods in [BaroniO3], and conclude that all the
reviewed mechanisms have drawbacks, and cannot capture all the concepts related to patterns [BaroniO3,
p.11,53]. In light of the reviews, Baroni et al. also concl t
format are easier used in the pattern formalisation pr ocess, namely Participants, Collaborations, Structure, and
in part Implementation [Baroni03, p.8,53]. As explained in table 3.2 on page 41, the first thr ee elements relate
to the actual design and relationships of the classes and objects used in the pattern. Common relations like
inheritance, creation, and forwarding are labelled as simple [BaroniO3, p.11] and are clearly encompassed by
the concepts and themes described by Gamma et al. The Implementation element primarily express
programming language constructs, which are highly structured. The four elements all favour structured over
unstructured information. In our view, this is a clear indication that fo rmalisation is closer related to
fundamental OO concepts as opposed to pattern concepts, such as qualities and forces that cannot easily be

described. The human factor is missing. Pattern concepts are what make patterns powerful abstractions and

Gunni Rode http://www.rode.dk/thesis Page42 of 197

EVALUATING SOFTWARE DESIGN PATITERMSORAND BACKGROUND al {¢owof
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

tools, not just the OO mechanisms used to implement them. Formalism may be able to resolve some

ambiguities, but literal descriptions are still warranted to describe the human aspect.

3.7. PatternCollections

A pattern cannot describe a complete OO system by itself , but targets a specific problem within the system .
Instead, patterns are often interrelated and rely on the behaviour of other patterns to achieve their own goals ,
especially so for patterns targeting the same domain or even context. The relations between patte rns are
important because applying a specific pattern may generate t he need to apply other patterns; a relation can
also indicate different possible solutions in form of other patterns. Int h e 0 Ga n g formét, & described in
section 3.5.1, the Related Patterns element expresses such pattern relationships. Based on how coherent a
collection of patterns are, including how the y individual ly are described, patterns can be correlated in different

types of collections as explained in table 3.3 below.

Table 3.3 i Pattern collections

Name Description

Catalogue A pattern catalogue is a collection of loosely and/ or informally related patterns . The contained
patterns are often divided into broad categories and are not necessarily written using uniform
pattern entries or even format [Buschmann96 p.23] .

System A pattern system is a cohesive set of related patterns described in a consistent format , working
together to support construction and evolution of whole architectures[Buschmann96 p.361].

Language A pattern language can be viewed as a pattern system covering a complete domain with rules
and guidelines, whic h explain how and when to apply its patterns to solve a problem that is
larger than any individual pattern can solve [Appleton00].

Pattern catalogues can evolve int o pattern systems, and d ue to the obvious benefits of systems over catalogues,

catalogues are rarely used because the knowledge they represent may be too unstructured to be truly useful in

¢19{L{

the design process. Gamma et al. identify the 0 Gang o fpattéro coledétion as a 0 c atGanhna@u e 6 |

p.8], but according to the Buschmann et al. definition, they constitute a pattern system. This is because the
oDesign Patternsd book pr eTdhae esGarhge ofP OBSAWH tAgethdessangen
domain; they are interrelated in intricate ways; many depend on other patterns to supply functionality; and they

are all written using the same format.

Though pattern systems share many desirable traits with pattern language s’, they can at most be considered
incomplete pattern languages [Buschmann96 p.360]. Pattern systems lack the robustness and wholeness of
pattern languages. Because of narrower focus, most are described using only a subfi set of the pattern elements
in the Canonical Form, but may eventually evolve into a pattern language. Pattern languages are not created all

at once, but evolve from pattern systems. In practice, however, the difference can be very hard to detect

"The first O0OPOSAS fatbem lsystenss eas alimost @ syrioeym for pattern languages as described by Alexander
[Buschmann96 p.360-362], while the second book explicitly differentiates between systems and languages [Schmidt00,
p.524-526).

Gunni Rode http://www.rode.dk/thesis Page43of 197

pattern

EVALUATING SOFTWARE DESIGN PATITERMSORAND BACKGROUND al {¢owQ{ ¢l 9{L{
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

[Appleton00]. Dominus for example, states that systems and even catalogues are what many people mistake for

pattern languages [Dominus03.

A pattern | anguage can be thought of as a Osupesenrppatternd tt
The contained patterns solve subfiproblems in a dividefiandfconquer fashion [Appleton00; Buschmann96

p.403]. Very few authors claim to have, or have ind eed, constructed a complete pattern language. Alexander

claims his 253 entry pattern language is complete for his domain, while Beck and Cunningham were among the

first to create a pattern language within the field of computer science, containing only five pattern entries

[Beck87. According to Buschmann et al., o ther small languages from computer science include Crossing Chams

for connecting OO systems to relational database, and CHECKS by Cunningham for information integrity

[Buschmann96 p.360]; in [Schmidt00, p.510-524], Buschmann et al. themselves claim to present a pattern

language for middleware and applications in relation to concurrency and networking . By Al exander ds def i ni
the general case is that pattern languages are very rare in any field. In computer science, catalogues and

systems are much more common because of their lenient definitions . As we understand it, this is also a key issue

pointed out by several critics of software pattern s (see for example [Dominus03): pattern languages are not

used in computer science, merely the patterns themselves in a loosely organised fashion. Regardless, whether or

not such languages indeed are pattern languages is open for debate, because there is no math ematical way to

determine it.

N

371. a¢DlFy3a 2F C2dz2NE tFGGSNYy {@adasSy

In 1995, Gamma et al . publ i shed [Ganemady,Diessribiggntwemyarttiree individdal b o o k

design patterns contained in a pattern system pertaining to OO, which popularised the use of patterns in

computer science [Appleton00]. As explained in section 2.5.1.3, the o0Gang of F o desg@ibedesi gn p
concepts and structures beyond individual obje cts and classes up to the granularity level of refinement of OO

subfi systems, customised to solve a general design problem in a particular context [Gamma95 p.3]. Below,

table 3.4 lists the twenty it hr ee 0 Gang of Four 6 Gamenad,anoludipgtheir elassifications o m |

and relationships.

Gamma et al. classifyt he 0Gang of Four 6 patterns in two dimensions acc
and Purpose (Creational, Structural, or Behavioural) [Gamma95 p.10]. The Scope criterion identifies whether

the pattern applies primarily to classes or objects. Class patterns deal with relationships between classes and

their subficlasses. Object patterns are more dynamic, and deal with objects and their relationships, but almost

all the patterns uses inheritance, and thus classes to some extent. Purpose is a problem fibased criterion that
classifies the 0Gan grdingfo wifabthey do. Queatiorialepatterss foaus onahe instantiation

process of objects [Gamma95 p.81]; Structural patterns focus on how classes and objects are composed to form

larger structures [Gamma95 p.137]; and finally Behavioural patterns focus on algorithms and assignment of

responsibilities between objects [Gamma95 p.221]. Other types of problem fibased classifications exist, for

instance Concurrency patterns (see for example [Schmidt0Q]).

Gunni Rode http://www.rode.dk/thesis Page44 of 197

EVALUATING SOFTWARE DESIGN PATITERMNSORAND BACKGROUND

al {¢owQ{

T 0KS aDlFy3a 2F C2dNE LI G§dSNya

of Four 6

AYLX SYSyi

Ay WFOF ¢

Table 3.4 6 Gang

pattern

Sy

Name Description Scope |Related Patterns
Creational Patterns
Abstract Provide an interface for creating families of Object |= creates Bridge
Factory related or dependent objects without specifying = alternative to Builder
their concrete classes [Gamma95 p.87]. = collaborates with or alternative
to Facade
= uses Factory Method
= uses or alternative to Protot ype
= is a Singleton
Builder Separate the construction of a complex object Object |= alternative to Abstract Factory
from its representation so that the same = creates Bridge
construction process can create different = creates Composite
representations [Gamma95 p.97]. = is a Singleton
Factory Define an interface for creating an object, but Class |= used by Abstract Factory
Method let subiiclasses decide which class to instantiate. = used by lterator
Factory Method lets a class defer instantiation to = alternative to Prototype
subfi classes [Gammagj p.107]. = used by Template Method
Prototype Specify the kinds of objects to create using a Object |= used by or alternative to
prototypical instance, and create new objects by Abstract Factory
copying this protot ype [Gamma95 p.117]. = implemented by Command
= collaborates with Decorator
= alternative to Factory Method
= is a Singleton
= collaborates with Template
Method
Singleton Ensurea class only has one instance, and provide |Object |= implemented by Abstract Factory
a global point of access to it [Gamma95 p.127]. = implemented by Builder
= implemented by Facade
= implemented by Mediator
= implemented by Proto type
= implemented by Observer
= implemented by State
Structural Patterns
Adapter Convert the interface of a class into another Class, |= alternative to Bridge
interface clients expect. Adapter lets classes Object |= alternative to Decorator
work together that could not otherwise because = alternative to Proxy
of incompatible interfaces [Gamma95 p.139].
Bridge Decouple an abstraction from its implementation | Object | = created by Abstract Factory
so that the two can vary independently = alternative to Adapter
[Gamma95 p.151]. = created by Builder
Composite Compose objects into tree structures to Object |= created by Builder
represent part il whole hierarchies. Composite = collaborates with Chain of
lets clients treat individual objects and Responsibility
compositions of obje cts uniformly [Gamma95 — collaborates with Decorator
p.163]. = collaborates with Flyweight
= used by Interpreter
= uses or collaborates with Iterator
= collaborates with Visitor
Decorator Attach additional responsibilities to an object Object |= alternative to Adapt er
=

dynamically. Decorators provide a flexible

collaborates with Prototype

Gunni Rode http://www.rode.dk/thesis

Page45of 197

EVALUATING SOFTWARE DESIGN PATITERMSORAND BACKGROUND al {¢owQ{ ¢l 9{L{
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

Table 3.4A 06 Gang of Fourdé pattern sy

Name Description Scope |Related Patterns
alternative to sub f classing for extending = collaborates with Composite
functionality [Gamma95 p.175]. = alternative to Strategy
Facade Provide a unified interface to a set of interfaces Object |= collaborates or alternative to

in a subfi system. Facade defines a higherfilevel Abstract Factory
interface that makes the sub fi system easier to alternative to Mediator
use [Gamma9; p.185]. is a Singleton

Flyweight Use sharing to support large numbers of fine i Object
grained objects efficiently [Gamma95 p.195].

collaborates with Composite
used by Interpreter
implemented or used by State
implemented by Strategy

Proxy Provide a surrogate placeholder for another Object
object to control access to it[Gamma9 p.207].

alternative to Adapter
alternative to Decorator

L R

Behavioural Patterns

Chain of Avoid coupling the sender of a request to its Object |= collaborates with Composite
Responsibility | receiver by giving more than one object a chance
to handle the request. Chain the receiving
objects and pass the request along the chain
until an object handles it[Gamma95 p.223].

Command Encapsulate a request as an object, thereby Object |= is a Composite
letting you parameterise clients with different = uses Memento
requests, queue or log requests, and support = is a Prototype

undoable operations [Gamma95 p.233].

Interpreter Given a language, define a representation forits |Class |= uses Composite
grammar along with an interprete r that uses the = uses Flyweight
representation to interpret sentences in the — uses Iterator
language [Gamma9d3 p.243]. = uses Visitor
Iterator Provide a way to access the elements of an Object | = used by or collaborates with
aggregate object sequentially without exposing Composite
its underlying representation [Gamma95 p.257]. = uses Factory Method
= used by Interpreter
= uses or alternative to Memento
Mediator Define an obje ct that encapsulates how a set of Object |= alternative to Facade
objects interact. Mediator promotes loos e = collaborates with Observer
coupling by keeping objects from referring to = is a Singleton
each other explicitly, and it lets you vary their
interaction independently [Gamma95 p.273].
Memento Without violating encapsulation, capture and Object |= used by Command
externalise an objects internal state so that the = used by or alternative to Iterator

object can be restored to this s tate later
[Gamma9; p.283].

collaborates with Mediator
is a Singleton

Observer Define a onefitofi many dependency between Object
objects so that when one object changes state,
all dependants are notified and updated
automatically [Gamma95 p.293].

1’

State Allow an object to alter its behaviour when its Object
internal state changes. The object will appear to
change its class [Gamma95 p.305].

is a or uses Flyweight
is a Singleton

uu

Strategy Define a family of algorithms, encapsulate each Object |= alternative to Decorator
one, and make them interchangeable. Strategy

Gunni Rode http://www.rode.dk/thesis Page46 of 197

EVALUATING SOFTWARE DESIGN PATITERMSORAND BACKGROUND al {¢owQ{ ¢l 9{L{
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

Table 3.4 06 Gang of Fourdé pattern system

Name Description Scope |Related Patterns

lets the algorithm vary independently from = is a Flyweight
clients that use it [Gamma95 p.315]. = alternative to Template Method
Template Define the skeleton of an algorithm in an Class |= uses Factory Method
Method operation, deferring some steps to sub fi classes. = collaborates with Prototype
=

Template Method lets subfi classes redefine
certain steps of an algorithm wi thout changing
the al gor it h@dnnads p.32b].ct u

alternative to Strategy

Visitor Represent an operation to be performed on the Object collaborates with Composite
elements of an object struct ure. Visitor lets you = used by Interpreter

define a new operation without changing the
classes of the elements on which it operates
[Gamma9s p.331].

U

The legends used to describe the pattern relationships indicate the type of relationship. We have deciphered the

relationships by examining all the pattern descriptions, especially the Related Patterns element , as well as

[Gamma9)s f.171,p.9-13]. The relationships do not indicate that the patterns must be used together as

illustrated, merely that they can be. They are by no means a for mal speci ficat
relationships, but help provide an overview in the practical application . The Uses and Used by legends typically

indicates a strong relationship, often a oOffiaaés r el at i ons hi p compmositioreang/ar welegatian int o
compliance with the general 0Gang o f21.F oupage 18 fhe iseasandas descr |
Implementedby | egends i ndfiacdatreesl aan odnisshi p, dibasedbkeptanoedor integface o c | as s
implementation . The Collaborates with legend indicates some form of collaboration between the patterns, for

example that both can be used by in conjunction by other patterns; the term is broadly defined and could refer

to a stronger relationship such as Used by depending on the actual application. The Creates and Created by

legends indicates a special form of creational collaboration. Finally, the Alternative to legend indicates that

alternative, but not identical, solutions to a problem exist; however, applying one pattern over an alternative

one may generate considerable changes to the design.

3.8. Pdtern Evolution

Individual patterns evolve over time , but so too can pattern catalogues, systems, and languages. This is of
pivotal importance because the patterns must reflect their environment, which according to Alexander is

constantly evolving.

3.8.1. Mining

Mining is the nonfitrivial art of discovering new patterns within systems in a given domain and describing them.
This is a term originating in computer science , but Alexander present similar ideas . The general idea is that true
patterns are discovered, not invented, due to the duality in the definition of a pattern as explained in section
3.1. Coplien states that patterns observed in an existing system may not be desirable. Some patterns are nonfi
generative, descriptive, and passive, i.e. recipe filike, which is not good and do not lead to desirable results

[Coplien, i.3]. Only good patterns should be mined for actual (re i) use, which can then help generate new

Gunni Rode http://www.rode.dk/thesis Page47 of 197

EVALUATING SOFTWARE DESIGN PATITERMSORAND BACKGROUND al {¢owQ{ ¢l 9{L{
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

systems that will contain the patter n traits. Such patterns are generative, prescriptive, and active ; they are

more than simple recipes.

Since patterns represents common bestfi practices to reoccurring solutions, the pattern naturally has to be found

in more than one design. The Rule of Three simply states that any pattern must have been found in at least
three real Aworld systems for it to be considered a valid pattern [PPR p.RuleOfThree]. Gamma et al. state that
none of the 0Gang of refresents dewareusproged depigns, bue thahthey are elements of

some successful OO system, or part of the folklore of the OO community [Gamma95 p.2] .

3.8.2. Antit Patterns

Antifi Patterns focus on existing software failures in an attempt to understand, prevent, and recover from them
[McCormick0]. The term and its meaning were originally coined by Brown et al. as a counterpart to design
patterns [Brown98]. Since they represent specific pitfalls to avoid during software development, they can
naturally be found within any imaginable area, for instance management, organisation, design, programming,
etc. Anti il Patterns are described using structured formats and each description is based on existing (bad)

solutions [McCormickOJ. Antifi patterns are sometimes referred to as code smells.

Design patterns ar e dbpatterns. Thel descibe a solation thabwill reenedy the problems

inherent in the antif pattern. Pattern mining is therefore c losely related to anti fipatterns: new patterns may
produce commonly accepted design patterns that can be used to avoid common pitfalls , but on the other hand,
overly or wrong use of design patterns may be an anti fi pattern by itself. Rarely, design patterns can thus be the
very 0s ydegribedniy an antifipattern. The optimal solution is to evolve from designs containing anti fi
patterns & well, preferably containing none & to designs utilising wellfidescribed design patterns without

constructing new anti fi patte rns in the process.

Example3.3 T TThe Layers pattern [Buschmann96 p.31] discussedin example 2.3 on page 25 is a design
pattern offering a solution to pitfalls described by the Big Ball of Mud [PPR p.BigBallOfMud] antifi pattern
[Buschmann96 p.29] . It of fers structure instead of chaos On the other hand, the Singletonitis [VieiroO6] anti i
pattern describes overly or wrong use of the Singleton [Gamma95 p.127] pattern ; it exists because the Singleton
pattern exist , and designers using the Singleton pattern should be aware of this. Example 2.4 on page 27
considered applying the Singleton pattern in the design of the described notification mechanism , specifically to
ensure unique Delivery and Formatter factories. Forcing singleton objects into libraries may cause
unforeseen runtime consequences, such as class loading issues in Java, but it may also cause undesirable
behaviour, such as severely restrict ing how clients can use and combine factories. The latte r may be fine, but
the consequences must naturally be thought through . In any case, the evolution of the notification mechanism

could even require refactoring causing less frequent usage of the Singleton pattern Y

There is no precise checklist specifying what constitutes an antif pattern, but [PPR p.AntiPatternsCatalog] lists
many commonly accepted antifipatterns. Nevertheless, functionality some people regard as antifi patterns,

others do not; eve n more so, functionality some regard as patterns, others regard as antifi patterns! A simple

Gunni Rode http://www.rode.dk/thesis Page48of 197

EVALUATING SOFTWARE DESIGN PATITERMSORAND BACKGROUND al {¢owof
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

example is invoking an overridden method in a super class from inside the overriding method in the subf class,
i.e. an extra tight coupling between a super and sub ficlass that must be enforced by the developer. In Java,
finalizer chaining is an example of this: when overriding java.lang.Object.finalize() , the developer
must ensure that the finalize () method in the super ficlass is invoked [Bloch01, p. 22-23]. Fowler identifies
this as the Call Super [Fowler05] antifipattern because there is no way to guarantee that the sub ficlass will
invoke the overridden method in the super class (as opposed to method combination, for example in CLOS
[DeMichiel87]). However, according to Grand [Grand99, p.179], Beck identifies this as a design pattern called
Extend Super, though with a slightly different context. As apractical example, Livshits has identifi ed misuse of
the Extend Super pattern in the Eclipse project , which corresponds to the situation described by the Call Super

antif pattern [Livshits05, p.1-2].

3.8.3. Proto Patterns

Ideally, a newly discovered and initially described pattern is called a proto pattern until its qualities and
elements have been validated and acknowledged by others, if at all, for example at a PLoPconference. This is
also a term originating in computer science. A proto pattern will be investigated to see if it is meaningful within
its domain; if it describe s the forces at play; if it has the required elements and qualities ; if the Rule of Three is
adhered to; etc. Even if a proto pattern is accepted as a valid pattern, there is no guarantee that it will ever be
commonly used. Many patterns are left unused . This does not necessarily mean that they are not useful, though
as a concept design patterns are often misused to denote anything that has the slightest touch of
recognisability, but perhaps rather that their context and problem is too specific to be truly valuable. ~ On the
other hand, m any soficalled patterns have been published violating the needed elements and qualities, not to
mention the Rule of Three, or repr esenting a solution in which no forces are at play. They could also be passive

as described by Coplien, not gener ating quality solutions .

Once a proto pattern has been established to represent a valid pattern, it is no longer considered a proto
pattern. The problem is naturally owhoo decides this. Furthermore, since Alexander describes patterns as being

nonfistatic, weclamt hey wi | | al ways f u imdotmiob theirsowl@dgerandtdestriptions.sFor

¢19{L{

example, the 0Gang GMmmalpu2B3) pattemiasaahldast[spawnedthe O POSA6 Command

Processor [Buschmann96 p. 277] pattern, and in the evaluation we even present a variant of the Command
Processor pattern that might eliminate the need to use Composite [Gamma95 p.163] (or macro) commands (see

section 8.3.2.3 on page 159).

3.8.4. Piecemeal Growth

Catalogues can mature and evolve into pattern systems over time as well as systemscan mature and evolve into
pattern languages via a process Alexander calls piecemeal growth : patterns are applied in an ordered sequence
of piecemeal growth, progressively evolving an initial architecture , which will then flourish into a olive 6 design
possessing the QWAN(see also table 3.1). As patterns are applied b y the means of piecemeal growth, applying
one pattern provides a context for the application of the next pattern [Appleton0Q]. This implies t hat both the

collection and the design will evolve ; if an individual pattern evolves, it may thus affect the entire collection.

Gunni Rode http://www.rode.dk/thesis Page49 of 197

EVALUATING SOFTWARE DESIGN PATITERMSORAND BACKGROUND al {¢owQ{ ¢l 9{L{
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

According to Appleton [Appleton00], Alexander explains that p iecemeal growth is based on the idea of re pair as

opposed to traditional architectural development processes that are based on the idea of replacement

Traditional processes assune that each act of design or construction can be viewed inisolation , oper fect 6 at th
time of construction . Alexander calls such processeslarge lump development . Piecemeal growth acknowledges

that environments are continuously changing and growing in order to keep its use in balance . Appleton notes

that there are similarities between piecemeal growth and spiral development processes involving prototyping

and iterative /evolutionary development , such as XP,as well as large lump development and the Waterfall model

[Appleton0Q]. As explained in section 2.2, iterative OOMs acknowledge that the design is not static, but dynamic

in nature. By using design patterns sharing similar traits the design will be able to evolve more easily.

A decade ago, Buschmann et al. speculated that the development of complete soft ware design pattern

languages was an optimistic, but worthwhile goal [Buschmann96 p.422]. To this day, the goal has not been

achieved, not even using the 0Gang of Four 6 patterns @&s the sys
Buschmann et al. estimate thatthe 0 Gang of F o ur may poget dsenuch asbalf sft thee general i

purpose design patterns of its domain [Buschmann96 p.422], i.e. at the granularity level of a few number of

cooperating classes.Even t hough t he 0 Ga n galsmdver&deaaded®ld, pcatditiens hage been e

added to the system by the authors. Many other design patterns have been published since then, however,

claiming to target t he s amer 6d opmaatitne ranss , t H evell Dk@GaxmgH @ A OF O @
patterns. To our knowledge, no unified attempt has yet been made to combine the vast number of design

patterns into a unified language, or evensystem. Thi s does not mean that theisoGang of
static, or has not evolved. As stated, m aenspawned \diiants od u a | 0Gan
other rel ated patterns. Furthermore, variants of the system itself could also evolve, for example a system

balancing the Multithreaded Safety force described by Lea [Lea93 i.12]. To handle this force explicitly , each

0Gang of Four é patt eifiengineeoed, lcadsing a@ least changesttaethe description and sample

code, but perhaps also to the pattern it self .

3.9. Pattern Application

As any tool or method, design patterns must be used correctly, i.e. when the design warrants it. It is as simple

as that. It is as difficult as that. Patterns cannot really offer any guarantees that the application design will be a
successtil one [Vlissides97, i.5], and a critical, or at least careful, approach to any pattern is warranted in our
opinion. Usage is closely related to how design patterns are perceived; i.e., as a practical tool; formally; more

abstractal ong Al exander ds original ideas; or somewhere in betwee

3.9.1. Usage

Several antifi patterns can help describe misuse of design patterns. The Cargo Cult [PPR p.CargoCult] anti i
pattern can explain the dangers of using design patterns without unde rstanding why, and on a software
engineering level, it can describe the dangers of following the proc edures dictated by an OO Method (OOM)
without understandingwhy. Thi s is relevant for the evalwuation in case th

advocate the use of specific language features. The Golden Hammer [PPR p.GoldenHammer] anti fi pattern can

Gunni Rode http://www.rode.dk/thesis Page50of 197

EVALUATING SOFTWARE DESIGN PATITERMSORAND BACKGROUND al {¢owQ{ ¢l 9{L{
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

describe the overuse of design patterns, i.e. applying patterns were they are not needed, perhaps adding
unnecessary layers to the code (overfiengineering). As a practical example, Livshits describes misuse of the

Extend Super (or the anti il pattern Call Super) and Observer patterns in the Eclipse project [Livshits05, p.1-3].

At [PPR p.DesignPatternsConsideredHarmful], these very issues are discussed, especially over fi engineering. No

conclusions are drawn, naturally, as the use and understanding of desi
prerogative, in part because of the lack of formalism. However, w e do think that critics often neglect the fact

that design patterns are more than recipes, especially <con
mi sconception is what V1 i ssi de¥lissideadr li. 8]: patterhseare lordyl seentad i ng di s m
recipes containing jargon, rules, programming tricks, data structures, etc ., without acknowledging important

pattern aspects such as probl em, context, teaching, and naming.
should not be underestimated because it is a powerful tool for communicating design issues [Vlissides97 i.4].

Whil e the 06Gang of Four 6 pat dleonteds, theagncept® and theenesddentifledic abl e f or
section 2.1.1 and 2.1.2 can still be utilised, because designers familiar with the patterns should also be familiar

with these themes and concepts.

Pattern usage is closely tied to th e implementation. Another issue raised is whether the use of design patterns
result in duplicate code within a system or not [PPR p.PatternBacklash]. Some of the main design goals in any
OO0 system are reuse, maintenance, and modification [WirfsBrock90, p.9]. The goals are reflected in the most
important non fifunctional forces regarding OO development as defined by Buschmann et al., namely
Changeability, Interoperability, Efficiency, Reliability, Testability, and Reusability [Buschmann96 p.404-410]
(see also section 3.4 on page 38). ldeally, functionality should be referenced, not copied [PPR
p.OnceAndOnlyOnce]. Duplication of code does not mix well with these principles and forces. Therefore, the
principle in applying patterns can seem contradictory to the very forces the patterns should heed. General
refactoring, p attern componentization, and language support are possible solutions to duplicate code problems.

Componentization and language support are discussed in some detail in chapter 4.

3.9.2. Understanding

Dominus has a bleak, but practical and perhaps more realistic, view on software de sign patterns and their usage,

and insists that software design patterns as described by ¢t}
di fferent from Al exander 6s i deas of p Dontineis0h Accading toespeci al |
Domi nus, the 0Gang of Four 6 i dea i(nsining)oanddthes mragrare peoplexoi st i ng de
i mpl ement them habitually. Contrary to this, Al exander ds

designed, but does not dictate ho w to design anything; the user can decide what patterns will lead to a good
design. Hence, Dominus concludes that the two approaches are completely different, representing two different
meanings assigned to the term design pattern. The o0 Gang of adh & much less prgfaured and human,

and he strongly advocates that the software pattern community needstore fAi mpl ement Al exander ds i de

As we understand Alexander, we agree with the statement that software pattern collections really do not

express the ideas set forth by Alexander concerning pattern languages, e.g. QWAN, order of unfolding,

Gunni Rode http://www.rode.dk/thesis Page51of 197

EVALUATING SOFTWARE DESIGN PATITERMSORAND BACKGROUND al {¢owQ{ ¢l 9{L{
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

generativity, etc. We perceive design patterns as a valuable and practical tool to aid the design process, but one

that do not generate fixed solutions. Ergo, we once again agree with Vlissides, who writes [Vlissides97, i.6]:

The key to generativity is in the parts of a pattern dedicated to teacBirthe forces and their
resolution, for example, or the discussion of consequences. Thegktdnaie particularly
useful as you define and refine an architecture. Belteving that patterns themselves can
generate architectures or anything else is definitely over the. tBptterns don't generate

anything; people dpand they do so only if bothdy and the patterns they use are up to snuff.

On the other hand, we think that software design patterns in practice generally try to express the ideas of

forces and pattern elements, and to some extent pattern qualities. A testament to this is the large n umber of
references to Al exander6s writi ng#ppleton00t Gammad®5 leax9d ¢dal0t opi ¢ s, f
PPR, but more importantly that the pattern fo rmats commonly used all express these notions. Dominus seems

close to performing OMissidesO? i tit.l2ilngofditshme s&@adrmdg [of Fourdé patt
Domi nus neglects the fact t hanotbdhasenaompletelydasrangomtbécauserob r eal |y
the order of wunfolding, including granularity. Because softuv
they rarely have such restrictions. The designer is still free to choose relevant design patte rns, and should be

able to decide how to implement them. In any case, even if the meaning of software design patterns differs

from Al exanderds notion, they can still be used (as Dominus

3.10.Summary

A software design pattern is a pattern related t o the design of software systems , but patterns can be applied
in different areas and fields . Thet er m o0desi gn patternod raf $okware design paterns| assi fi c a
that can be used throughout the OOD phase for OO systems, targeting communicating objects and classes
that are customised to solve a general design problem in a particular context . Design patterns thus rely
heavily on OO concepts , and separate the principles from the implementation . Different languages can thus

be used to implement the solution described by a given pattern .

The notion of a pattern is two fifold: a pattern is an abstraction of practical experience and basic knowledge ,
but it is also a literary description of this knowledge , written in a consistent format . The pattern describes
the problem it solves as well as a solution to it ; hence, the pattern can be applied for similar problems in other
contexts. As such, design patterns are not invented, but discovered in existing solutions . Different formats
exist, containing require d pattern elements to describe different important aspects of the pattern
functionality, such as a concise name, forces, related patterns , etc. A format traditionally uses natural
language, illustrations , and examples as opposed to formal specifications. The naming of patterns allows
designers and others to communicate architectural ideas in a high filevel consistent language . Hence, human
interaction is paramount in pattern application because patterns are not outfioffithefibox reusable
components; pattern applic ation as described by Alexander requires interpretation and adaptation to apply
in them in the design at hand. Within computer science, however, efforts are being made to include patterns as

language features or implement them as reusable components. Not everything that can be written using a

Gunni Rode http://www.rode.dk/thesis Page52 of 197

EVALUATING SOFTWARE DESIGN PATITERMSORAND BACKGROUND al {¢owof
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

pattern format constitutes a valid pattern, because patterns must possess a certain set of qualities to ensure
the overall quality of the design. The qualities are Abstraction , Composibility , Encapsulation, Equilibrium ,

Generativity , and Openness, and many of these qualities have similar constructs in OO

A pattern can be an entry in a collection . A pattern catalogue is a collection of loosely and/or informally
related patterns, while a pattern system is a cohesive se of related patterns described in a consistent format
that works closely together. A pattern language can be viewed as a pattern system covering a complete
domain with rules and guidelines, which explain how and when to apply its patterns to solve a probl em that is
larger than any individual pattern can solve . Patterns and pattern collections will evolve over time , reflecting
knowledge gained through continued use and adaptation . Patterns can present solutions to known software
failures that are recorded as antifipatterns , but unwise application of patterns may be an anti fipattern by
itself . As patterns are implement ed using a given programming language, the features of the language may
influence the application and perhaps bring new insights to the pattern d escription. On the other hand, t he

pattern description may also dictate behaviour that has direct impact on the implementation

Within the pattern community, there is some debate about what a design pattern is . Some people are followers
of Al e x an d eas,0whichi émphasise the human interaction , while others prefer more structural
approaches in order to analyse and apply patterns . Pattern formalism tries to bring rigid structure to design
patterns at the expense of human interaction. In this thesis, we t ry to apply the best from both worlds . We
perceive design patterns as a valuable and practical tool to aid the design process, but one that do not
generate fixed solutions . As any tool or method, design patterns must be used correctly : only when the

design warrants it .

The 6 Gang o f de§ign upati®rn system contains twenty fithree design patterns classified in two

dimensions: Scope and Purpose. The Scope criterion identifies whether the pattern applies to Classes and/ or
Objects . Purpose is a problem fibased criterion t hat c¢cl assi fies the 0Gang what
they do . Creational patterns focus on the instantiation process of objects , Sructural patterns on how classes

and objects are composed to form larger structures , and Behavioural pat terns on algorithms and assignment

of responsibilities between objects. The o0Gang of Foudreés cp atbteer nuss i aarge t he

format , using C+ and Smalltalk as example code, and we deciphered the pattern descriptions to clarify and

¢19{L{

Four 6

P e

0Gang

label the relationships bet ween the individual TohGea niggGaonfg Foofu r Exprgsadt t peatntser r

the OO themes and concepts described in chapter 2. The concepts and C++ constructs used i n t he

F o u cadonical pattern implementations will be used extensively in the evaluation as reference points for

the features used in the Java 6 implementations

Gunni Rode http://www.rode.dk/thesis Page53of 197

0Gang

EVALUATING SOFTWARE DESIGN PATITERMSORAND BACKGROUND al {¢owQ{ ¢l 9{L{
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

Related Work

When the only tool you have is a hammer,
everything looks like a nail
i TAbraham Maslow

The connection between design patterns and progr ammi
patterns were published . In this chapter, we discuss selected studies regarding applicaton of t he o0 Gan
patterns using specific languages, as well as how different features may help provide simpler implementations or
even components. The level of language support for a given pattern will influence the implementation because
it determines how much work is required to apply the pattern. ~ We focus on both dynamic and static languages
as we consider Java 6 a hybrid: though static, its special language mechanisms and runtime capabilities allow
Java to exhibit very dynamic behaviour at runtime. We compare the different studies and relate the

observations to issues deemed relevant for Java 6. As always, a summary concludes this chapter.

The choice of language will affect the pattern application because the language will ultimately decide what can

and what cannot be done (easily) in light of supporte d programming paradigms [Gamma95 p.4]. Several studies

have been undertaken to investigate 0Gang of Four ®dhispattern
chapter discusses studies of implementations in dynamic languageslike Common Lisp Dylan, and Scheme, and in

static languages like C++, Java, Java + Aspect], and Eiffel. Common features used in the various studies as well

as discovered common pattern behaviour are compared in section 4.4, but this is not an easy task as the studies

have different focus. W e start by establishing the level of support a given language has for a given pattern.

4.1. Language Support

The traditional close connection between design patterns and statically typ ed languages is criticised by some,
mainly because static languages often lack advanced runtime constr ucts. Thed human compi |l er 6 is put

repeatedly writing Metaf programs, e.g. patterns, to cope with the missing (runtime) features [GrahamO024. Even

more specific, some believe the 0Gang of Fourdé design patt

[Dominus02 PPR p.DesignPatternsinDynamicProgramming]. However, such claims seem to neglect that several

of the 0Gang of Fouro patterns were exemplified using Smal
dynamic typing and reflection . The patterns are still relevant even if implemented in Smalltalk . Still, others

regard traces of the 0 Gang of F o urrthie squrae code rasicede smells; an indication of the language

used is not powerful enough and/or developers blindly using design patterns [Halloway07]. This view assumes

that the entire pattern abstraction can be represented as language features. The point is moot as already

discussed in section 3.9 because like any other tool, design patterns should be used only when the design merits

it. Furthermore, we have yet to a see a language that has built fiin support forall the 0 Gang of Four 6 patter

At [PPR p.AreDesignPatternsMissingLanguageFeatures], it is discussed whether a pattern stops being a pattern
in the context of a language that has some ki nd of built fiin support for it. The discussion concerns the verbal use

of the term pattern and as well as its meaning. There is no definitive conclusion presented, but it is suggested

Gunni Rode http://www.rode.dk/thesis Pages4 of 197

[

EVALUATING SOFTWARE DESIGN PATITERMSORAND BACKGROUND al {¢owQ{ ¢l 9{L{
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

that design patterns are one way programming languages can evolve. The consensus seems to be that a pattern
does not stop being a pattern because a given language has support for it, but that designers stop referring to it
explicitly as a pattern, effectively altering the common vocabulary of patterns for the given domain. From this
follows that developers will stop referring to the pattern description as well; therefore, we conclude, the
ultimate consequence must then be that when all programming languages implement a given pattern, or have
support for it as a component, there will no longer be use for its description. These issues indicate a very strong
connection between patterns and languages, but one that may eventually be discarded. Meyer calls this the
Pattern Elimination Conjecture: any useful pattern should in the long t erm be discarded as a pattern, and
replaced by reusable components with a clear, simple, directly usable interface [Meyer03 p.41]. This
corresponds well with the efforts being made regarding pattern formalism as described in section 3.6 at the

expense of human interaction in the application process.

4.1.1. Implementation Level

In [Norvig96], Norvig classifies the level of implementation a pattern can have in a given programming language
as paraphrased in table 4.1 below. Builtfiin support for a pattern thus corresponds to either Invisible or Formal

if part of the standard libraries , while Informal corresponds to Alexander 8 s von [attern application.

Table 4.1 i Pattern implementation level (modified from [Norvig96, p.7])

Level Description Java 6 Example

Invisible | A pattern is so much a part of the language that its usage is | The for fi each loop help hide explicit
not noticed by the user. usage of the Iterator pattern.

Formal A pattern is implemented in a language, but must be The Iterator pattern can still be
instantiated or called for each use (component). explicitly implemented and/ or used.

Informal | A pattern is part of a common shared vocabulary and The Singleton pattern must be

referred to by name, but must be implemented from scratch |implemented for each relevant class.
for each use based on its description.

Note, that even though a pattern is invisible on average use does not mean that it cannot be used formally.
Invisible and Formal does not exclude a pattern from a common vocabulary or from being implemented
alternatively eith er, e.g. Informally . The classification is rather subjective because different users may notice
different things, depending on the ir point of view: an API developer may need to create different Iterator
implementations, but the API user may not need to. In our view, the distinction between Invisible and Formal is

vaguely defined, whereas it is easier to distinguish between Formal and Informal.

As summarsed in the section 4.2.1, Norvig i mplememus 6t patd@amg o Eommon Lis
and arrives at osimpler6 implementations. At [PPR, Nor vi gds si mpl er i mpl ement ations of
patterns are seen as augmenting Grahamés critique about t he oO0human .dHoweyi WhleNborvigt wor k

is in agreement with Graham in using certain dynamic features to implement functionality, Graham is directly

criticising the concept of design patterns . By using a proper language, says Graham, the need for design patterns

is nonfi existent. We disagree, and to our understanding, so do es Norvig, Meyer [Meyer03 p.41], and [PPR.

Gunni Rode http://www.rode.dk/thesis Pages5 of 197

EVALUATING SOFTWARE DESIGN PATITERMSORAND BACKGROUND al {¢owQ{ ¢l 9{L{
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

4.1.2. Discussion

In our view, the validity of a design pattern is not lessened because a given language has full, partial, or just
easier support for it . The knowledge represented by a design pattern should ideally be independent of any
specific programming language, what Norvig calls Programming Into a language [Norvig96, p.58] as already
described in section 2.5. Lea states that a pattern is not an implementation, but instead describes when, why,
and how to go about creating an implementation or other engineering product [LeaOQ, i.6]. We believe the
danger of equalising design patterns with the implementation is forgetting that the human factor is paramount

in understanding and applying design patterns in different contexts, which is exactly what makes design patterns

a very flexible tool indeed. On the other hand, the ease and practicality of using design patterns is also
important. For example, nobody wants to implement the Iterator pattern for each system . In Java, the Java
Collections framework is used. In Java, however, everybody has to implement the Sing leton pattern for each
applicable class because the language does not support the abstraction described by the pattern (which Java
actually in part does, as discovered during the evaluation and explained in section 7.1.1.4 on page 92). Hence,
the sheer practicality in the frequent application of certain simple design patterns in our view warrants Formal
and/or Invisible implementations, respectively componentization and/or language support. Even though Coplien
is in favour of pattern componentization [Coplien, i.3], he equalises the human factor (still required) with
creativity and claims it will always be needed [Coplien, i.11]. Along these lin es, Fowler argues that patterns are
needed because realfiworld solutions have failed despite using the latest technology for lack of ordinary
solutions. Patterns provide a way to organise and name those ordinary solutions to make it easier for ordinary
people to use them [Fowler06] . Thi s i s contrary t o Gr ahamos claim of
oinstitutionalised 6 [GrahamO02], especially considering no standard formalisation of patterns has been agreed

upon as discussed in section3.6 on page 42.

Practical pattern implementation, however, is dependent on the pattern granularity. A pattern can be applied

across systems, but also within systems. Typically, archite ctural design patterns, having large granularity, are

applied once per system, for example the Two fi Tier Architecture pattern from example 2.3 on page 25. We find

it reasonable to assume their level of granularity and abstraction will make them difficult to componentize

compared to the 0Gang of Four 6 patt er mustbevadapted td thensgsemgr anul ar i
at hand. Hence, it is also unlikely they will evol ve into language features. Ergo, they will not cause duplicate

code. Conversely, the 0Gang of Fouro6 design patterns descril
occur in many different contexts with relatively fine granularity within the same sy stem. It is unreasonable to

assume that such patterns, for example Iterator, would be applicable only once in a system, even more so for

idioms as they are very tightly connected to a given programming language.

On the other hand, evYempasadme nGGadndkeofFaE@aur and Templ ate Met
of abstraction and granularity level. Hence, componentization and language support in form of Formal and

Invisible patterns, respectively, can augment reuse, but patterns that for one reason or another remain Informal

still generate specific implementations for each usage even within the same system. We consider the Singleton

pattern the archetypal example of this in Java. This raises the issue if Informal design patterns collide with the

principles of OO as discussed at [PPR. In our view, this is not the case. Each application of the pattern will

Gunni Rode http://www.rode.dk/thesis Page56 of 197

EVALUATING SOFTWARE DESIGN PATITERMSORAND BACKGROUND al {¢owQ{ ¢l 9{L{
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

cause an implementation targeted for a specific problem in a specific context within the system. Two different

contexts will thus ca use two different implementations, albeit similar. Common functionality can still be

factored out. What appears as duplicate code is in reality not; the true semantics come from the pattern
description combined with the domait aloisecoddba gntarzalogy man OOl n Al e x an
system: is it unreasonable to assume that within a given house, a owindow pattern 6 can be applied more than

once? Obviously not, and this results in duplicate functionality. In case the design of a window is dis covered to

be flawed, for example if the glass does not provide sufficient insulation, all windows have to be repaired or

replaced eventually. Still, the alternative is surely not to apply the pattern only once.

We believe the success of componentizing a given pattern into a language or library depends perhaps more so on
its abstraction and granularity level than the language in which it is implemented . It is possible, though, that the
language will dictate behaviour that makes componentization difficult, if not impossible. While the human
factor is important in understanding and applying patterns, we still think simple design patterns should be

componentized, if possible; or even better evolve into language features.

4.2. Dynamic Languages

The studies by Norvig [Norvig96] and Sullivan [Sullivan02a; Sullivan02b] emphasise that dynamic features of
Common Lisp, Dylan, and Scheme, respectively, have a large impact in providing simp ler implementati ons.
However, we cannot find a standard precise definition of what a dynamic language is or what it must support. A
generalisation is that a dynamic language possesses one or more of the following overall features: dynamic
typing, runtime code modification , and interpretation [Hacknot07]. Dynamic typing (or dynamic type binding)
enforces type rules at runtime as opposed to compile fitime. The type of a variable is not determined until the
variable is actually used at runtime [Sethi96, p.137]. Runtime code modification allows changes to the structure
of executing code, for example adding new methods to an object. Interpretation is the process of reading and
evaluating program code at runtime without prior compilation; a n interpreter runs the program directly

[Sethi96, p.20]. Itis also worth noting that Common Lisp, Dylan, and Scheme all are functional languages.

4.2.1. Common Lisp and Dylan

Not | ong after the 0Desi gn Néhagtshoreed that sixtebnmfatte twerdys At phurbel ei sohGeadn, g

of Fouré patterns have qual it &mmendispyor Bylamgorhpared ta Gap foreame nt at i on
least some uses of each pattern [Norvig96, p.9]. Common Lisp and Dylan are dynamic languages, and many of

the language features found in dynamic languages are exactly what makes the pattern application simpler, such

as firstficlass types [Norvig96, p.10]. Table 4.2 illustrates the specific features Norvig found that influenced

specific 0 Gang of Fosuré pattern

Unfortunately, Norvig does not directly apply his i mplemen
patterns, nor does he discuss why seven patterns cannot be made simpler in dynamic languages. Though note
that four of them are Structural patterns, i.e. Adapter, Bridge, Composite, and Decorator, two are Creational,

i.e. Prototype and Singleton, and only one is Behavioural, namely Memento. At first, this seems to m ake sense:

Gunni Rode http://www.rode.dk/thesis Page57 of 197

EVALUATING SOFTWARE DESIGN PATITERMSORAND BACKGROUND al {¢owQ{ ¢l 9{L{
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

dynamic languages are all about runtime behaviour whereas Structural patterns represent (static) structure.
However, the ability to perform runtime code modification would seem to affect at least Adapter, and Decorator

is an ideal candidate for method combination. Furthermore, the two Creational patterns would be almost
directly supported in prototype fibased languages, which Common Lisp and Dylan are not; Common Lisp utilises

CLOS for OO capabilities (e.g. multiple fi dispatch), and Dylan utilises built fiin classes.

Table 4.2/ 6 Gang o fattéfrs inrCOmmon Lisp and Dylan (modified from [Norvig96, p.10])

Feature Description 0Gang of Four
First fi class types Types can be used without restrictions and are treated Abstract Factory, Chain of
as any other (first ficlass) object, i.e. can be Responsibility, Factory
constructed at runtime, stored in variables, have Method, Flyweight, Proxy,
identities, etc . [Norvig96, p.11]. State
First fi class functions A first fi class function is a first fi class object, and can Command, Strategy,
for example be created at runtime [Norvig96, p.14]. Template Method, Visitor
Macros Macros provide syntactic abstraction [Norvig96, p.17] . Interpreter , Iterator
Method combination Combination of methods having the same signature to Mediator, Observer

execute in a given order [Sullivan02a, p.9]. Enforced by
the language as in CLOS orexplicitly , e.g. using the
Extend Super pattern (see section 3.8.2 on page 48).

Multi i methods In multiple fidispatch, methods are grouped based on Builder
(multiple A dispatch, their name into multi fi methods, and the correct
generic function) method to invoke is determined based on all the

arguments [Sullivan02a, p.8-9].

Modules A module explicitly encapsulates data and operations Facade
[Sethi96, p.209]. May also represent namespaces
[Norvig96, p.28] .

Not discussed Adapter, Bridge, Composite, Decorator, Memento, Prototype, Singleton

Some understand Norvigds work as a criticism of design patt
concept of design patterns, merely stressing the impact of the programming languag e, advocating the use of
dynamic languages. Norvig even suggess several other pattern variants for dynamic languages as well [Norvig96,
p.31]. He states that design patterns are higher fi order abstractions for program organisation that help discuss,

weigh, and record design trade fi offs [Norvig96, p.4].

4.2.2. Scheme

In [Sullivan02a] and [Sullivan02b], Sullivan studies if language features can move design patterns away from the

Informal implementation level into the Invisible or Formal levels ; that is, how the basic capabilities of reflection

and dynamism affectt he need f or, use of, and i mpl ement at Tootrgtoof t he 0(
establish a connection betwe en modelling and programming languages, Sullivan investigates how languages can

enable more abstraction in a declarative style, i.e. abstraction expressed using language constructs , for example

in form of multi fimethods. Sullivan emphasises the need for modelling as models enable abstraction, are

declarative in style, and can allow for pre firuntime verification , but warns that dynamic features make it more

difficult to analyse program statically [Sullivan02b, p.3,35] . As the language, Scheme is used with the GLOS

Gunni Rode http://www.rode.dk/thesis Page58of 197

EVALUATING SOFTWARE DESIGN PATITERMSORAND BACKGROUND
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

al {¢oOwO{ ¢19{L{

library that adds certain OOP facilities. Sullivan reasons that reflection is closely related to first ficlass values as

reflection refers to the ability of a program to reason about its own structure and behaviour [Sullivan02a, p.3].
Table 4.3 summarises the outcome of Sullivan & investigations based on the summaries for each investigated
pattern in [Sullivan02g]. It illustrates which featur es where useful in a given pattern implementation, and there

is a large overlap with the features discussed by Norvig from table 4.2.

Scheme

Table 4.3/ 0 Ga n ¢ oaufr 6

patt er hGLOS n

Feature Description 0Gang of Four

First fi class types Seetable 4.2 on page 58. Abstract Factory, Builder,
Prototype

First fi class functions Seetable 4.2. Adapter, Builder, Chain of
Responsibility, Command,
Iterator , Mediator, Strategy

Macros Seetable 4.2. Proxy

Method combinat ion Seetable 4.2. Decorator, Proxy, Memento

Multi i methods Seetable 4.2. Abstract Factory, Adapter,

(multiple A dispatch, Builder, Chain of

generic function s) Responsibility, Factory
Method, Mediator, Observer,
Strategy, Visitor

Modules Seetable 4.2. Adapter

Reflection Reflection refers to the ability of a program to reason Abstract Factory, Prototype,

about its own structure and behaviour [Sullivan02a,
p.3l.

Chain of Responsibility,
Memento

Instantiation protocol s

Controls how objects are created, either explicitly or
implicitly (hidden or built fiin).

Factory Method, Singleton,
Flyweight, Proxy

Singleton types

A type that matches exactly one value [Sullivan02a,

Abstract Factory, Factory

p.6], e.g. an instance of java.lang.Class in Java. Method, Proxy
Predicate types Predicate types are based on predicate functions and State

thus resolved at runtime [Sullivan02a, p.9] .
Closures A closure consists of an expression (function) and its Command Flyweight,

saved environment [Sethi96, p.534]. Iterator , Strategy

Prototype fi based Has no notion of classes. Behaviour reuse is achieved by

cloning existing objects that act as prototypes.

Prototype, State

None (similar) Bridge (universal), Composite, Facade (universal), Interpreter , Template Method

(universal)

In accordance with Norvig, Sullivan concludes that dynamic features such as reflection, multiple f dispatch,

higherfi order functions, and predicatetypes have a positive i mpactgoanf nfaudd patt erf

[Sullivan02a, p.43]. Underlined patterns in the table above represent similar usage by Norvig. Instantiation and
method protocols are also effective [Sullivan02b, p.34]. Sullivan states that the need for explicit patterns may

disappear or the implementation may become much simpler , but mention that the Scheme implementations do
at the

not always capture the entire pattern functionality . Emphasis is clearly on the implementation aspect

expense of pattern abstraction. Factory Method and Singleton, for example, are described as easily

Gunni Rode http://www.rode.dk/thesis Page59 of 197

EVALUATING SOFTWARE DESIGN PATITERMSORAND BACKGROUND al {¢owQ{ ¢l 9{L{
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

implemented in any language supporting an extensible instantiation protocol, but C++ already supports
modification of the instantiation protocol by overloading new [Stroustrup9l, p.215]. This indicates that the
pattern s describe more than code. Command and Strategy are implemented using closures, but closures do not
capture the abstraction of an object with addit ional functionality, i.e. extra functionality, polymorphism,
identity, etc. Just because a language supports a given feature does not mean the feature is the pattern by
itself . What it does mean is that the feature in certain cases can represent the pattern implementation in the

language in question.

Comparing the results from Sullivan and Norvig, it puzzles us that Norvig only lists the patterns as utilising a

single feature. It is probably for educational or practical purposes, i.e. listed according to primary exploited

feature. We think t his is why there is little overlap in features for the individual patterns (underlined patterns in

table 4.3), while the overall conclusions are the same. Unfortunately, it makes it hard to conclu de anything

based on Nor Suliverfis moset detdilgd, and several of the patterns no t covered by Norvig are

addressed, for example Adapter, Decorator, Prototype, and Singleton. Su | | i corelasidrs however, comes as

no surprise as Scheme is clsely related to Lisp . Like Norvig, Sul | i van accedes that the 0Gang
are closely related to design and modelling as the patterns discuss design trade i offs. Even more so, certain

patterns represent universal programming concepts that cannot be solved with language features alone

[Sullivan02a, p.43; Sullivan02b, p.36].

4.3. StaticLanguages

C++ and Java are statically typed languages. Type errors are detected at compile fitime. The advanced features
dscussed by Gamma et al . for the 0Gang of Fouro6 i mplementat

which uses dynamic typing.

4.3.1. C++

The 0Gang of Fourdé patterns all/l s uppl Vhe featupeb esetearetttosei on or s
presented in the Implementation and Sample Code pattern elements in [Gamma9g. Gamma et al. primarily use
C++ constructs found commonly elsewhere as well, e.g. classes, inheritance, access modifiers, etc ., but more
exotic features like templates, multiple inheritance, friends, overloaded operators are also utilised. These

features are not found in Java 6, and hence alternative ways to implement the pattern in question must be

applied.
4.3.2. Java
Al | the 0Gang of Four 6 desi gedinptdebst gavarl.®, 118,aandcel.4bsemnereven anp | e me n t

an Invisible implementation level as exemplified in section 2.6.2 on page 29. Many different Java
implementations of individual 0Gang of Four 6 Graad, forexamme, peesents almost exact Java 1.2
versions of al | t he 0Gang @Grand9& &Granddd, aheé $langemanrp et talt baven s in [
implemented pure , albeit very simpl e, Java 1.4 versions used for comparison with the AspectJ implementations

discussed next [Hannemann0Z. Another example is [Eckel03], where s o me o f Javads more advance

Gunni Rode http://www.rode.dk/thesis Page60of 197

EVALUATING SOFTWARE DESIGN PATITERMSORAND BACKGROUND al {¢owQ{ ¢l 9{L{
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

such as reflection and dynamic pro xies are used. However, the implementation level of the individual patterns is

primarily Informal, and we know of no efforts to componenti z

Hence, al | 0Gang of Four o6 patterns ar FEsisaxpested as Javabdhereahé i cabl e i
fundamental OO concepts and can directly express many of the themes discussed by Gamma et al. Java is not

considered a dynamic language, but it still possesses advanced runtime features like reflection and dynamic

classloading. Bear i ng Nor vi g and Su lelthereferen @&ssumeitloat the priaaticalrapplication wil

be easier and/or present alternatives to the canonical C++ implementations. On the other hand, runtime

features in classfibased languages often yield verbose source code, which could imply more work, and possibly

clutter the core functionality and intent of the pattern when reviewing the source code. Reusable libraries and

components, however, can shield the pattern imp lementations from much of t his.

4.3.3. Java and AspectJ

Sullivan notes that crosscutting concerns of Aspectfi Oriented Programming (AOP) matches well design patterns

because patterns are primarily concerned with the coordinat
classes and abstact methods [Sullivan02a, p.3] . Patterns are the glue that connects the joints [Sullivan02b,

p.6]. Hannemann et al. have shown this in practice by implementingt he 0 Gang of Fourldlamatterns i
Aspectd [Aspect]], claiming that seventeen of the twenty fithree implementations exhibit modularity

improvements in terms of better code locality, reusability, composibility, and (un)pluggablity. The

improvements vary, but with the greatest improvement coming when the pattern solution structure involves

crosscutting concerns, e.g. one object playing multiple roles, many objects playing one role, or an object

playing roles in multiple pattern instances [HannemannO2 p.1]. Besides locality and reusability, and following

coderilevel benefits, Hannemann et al. state that modular pattern implementations ensure that the entire

pattern description of a pattern instance is | gstemlas sed and
could otherwise pose a problem [Hannemann02 p.7]. Twelve of the implementations constitute reusable

components with respect to abstract aspects[Hannemann02 t.1].

AspectJ uses aspects to encapsuate crosscutting concerns in one place . They can apply additional behaviour, or

advice, to various joint points , for example constructors or methods. Joint points are specified using pointcuts,

either directly or in form of a oqueryo to detect if a given joint point matches the aspect based on signatures

Furthermore, to encapsulate all code related to a given concern in a single aspect, the open class mechanism

might be used to declare members or parents of another class . For a full introduction to AspectJ , see [Aspect]].

Table 4.4 on page 62 | i st s the different Aspectd features used to i

implementations .

As expected, the dynamic fe atures of Aspect] are what facilitate easier implementations. Advice is equivalent
to the method combination features found in CLOS and GLOS, clearly illustrated in the ability to execute the
contained code before, after, and around join points, though adv ice cannot be added or removed at runtime
[Sullivan02a, p.20]. Hannemann et al. utilise this feature extensively, for example to intercept calls to new for

Singleton classes, thereby creating a specific instantiation protocol. Point cuts can be seen as macros. In pure

Gunni Rode http://www.rode.dk/thesis Page6lof 197

EVALUATING SOFTWARE DESIGN PATITERNSORAND BACKGROUND a! {¢eowO{ ¢ 9{L{
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

Java, the reflection mechanism does not allow for structural changes to classes or objects, only behavioural

(or gandl yo) . By exposing t he structure of t he executing
java.lang.Class and java.lang.reflect.Method classes representing a class and a method,

respectively, such objects can be accessed like any other first ficlass object. In AspectJ, however, the open class

mechanismisaworkfiar ound t o modi fy Javaods ppoadhiegrtrueifisstefi class lethaviaur. c | asse s,

Aspect]J still adheres to the standard Java semantics, which gives certain static advantages such as compile A

time type errors . Some errors are still only seen at runtime, for example if a given pointcut does not ca pture a

jointpoint as expected.

Table 4.4/ 6 Gang

of Fourdé patterns

Feature

Description

0Gang of Four

Roles only used within
pattern aspect

Abstract aspect per pattern defines the roles and
default implementations where possible, local to the
pattern realisations. Abstract pointcuts specif y hooks
for additional specialisation [HannemannO02 p.5].

Chain of Responsibility,
Composite, Command,
Mediator, Observer

Aspects as object
factories

Patterns are abstracted into aspects containing code for
the factory functionality; the factory methods used are
contained either in the abstract aspect or in the
participants [Hannemann02 p.5].

Flyweight, Iterator, Memento,
Prototype, Singleton

Language constructs

Pattern implementations are directly affected by
language constructs such as the open class mechanism
or by attaching advice [HannemannO02 p.6] .

Adapter, Decorator, Proxy,
Strategy, Visitor

Multiple inheritance

Pattern implementations can implement any number of
interfaces and use the open class mechanism to attach
default functionality [HannemannO02 p.6].

Abstract Factory, Factory
Method, Bridge, Builder,
Template Method

Scattered code
modularised

Attaching advice to be break tight coupling between
participants [HannemannO02 p.7] .

Interp reter, State

None (similar)

Facade

Some of the implementations in AspectJ result in a completely new design structure.

We find it difficult to

identify the actual role Java occupies in this study as opposed to specific Aspect] features. Most of the Java
features used in the implementations are trivial, such as classes and interfaces. Very few advanced features
such as inner classes and weak references are used. The pattern functionality is achieved with the AspectJ

features, which may mimic C++ feature s such as multiple inheritance and private (functional) inheritance.

Byu s i n g s luitivimréflection mechanism and annotations as of version five, we believe much of the same
dynamic functionality could be achieved without the use of AspectJ , though at some expense. Classes could
implement advice functionality that can be attached to any accessible object (jointpoint) , i.e. field,

constructor, or method. Pointcuts could be specified by annotations. Unfortunately, all access to enriched

objects must go through proxy objects to intercept invocations to apply the advice , but it would allow the
advice to change at runtime . This indicates a need for a framework to handle the execution. Furthermore, as
reflection would be utilised extensively, runtime errors are in effect unavoidable , but probably manageable. It

reminds us of existing products using similar ideas, such as Hibernate, JBoss Seam, or Google Guice. In any case,

Gunni Rode http://www.rode.dk/thesis Page62 of 197

EVALUATING SOFTWARE DESIGN PATITERMNSORAND BACKGROUND a!l {¢o9wO{ ¢1 9{L{

TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

in accordance with Su |l | i corlostbrss, J avads refl ecti on me gihfiaantiingpactonthe | d have
0Gang of Four o6 pattern i mpl ement at ithathas few suntime featurea.r e exempl i f i
4.3.4. Eiffel

In section 2.6.2 on page 29, we discussed how patterns could aid in the implementation phase during OO
development. Options are adaptation and application, componentization, and language support, corresponding

wi th Norvigds i mpl ementati on |l evel s I nf oUsinga Eiffel ad the mal ,
programming language, Meyer and Arnout claim to provide full componentizaton f or el even of t he
Four ¢ patt er ncempaentzatipnafortan aditional four [Meyer06, p.3], totalling two thirds of the

patterns. Full componentization is defined by Meyer and Arnout to include all the original pattern functionality

[Meyer06, p.2] and is equivalent to what Norvig calls first ficlass patterns [Norvig96, p.31]. Their implementati on

level is Formal because as components they can be treated like any other object [Norvig96, p.32], or Invisible as

part of the language. Componentization is an effective way to avoid duplicate code as discussed in section 3.9.1

on page 50. It is more difficult than ad fihoc pattern application as examined by Norvig and Sullivan , however,
because it focuses extensively on reusability. The focus of Meyer and Arnout is closer to pure Java 6
implementations compared to the Aspect] implementations by Hannemann et al., because their components

rely on reusable classes, not reusable aspects [Arnout06]. Furthermore, the specific Eiffel features utilis ed in

the components are described in [Arnout06, t.1].

Examples of full componentization achieved by Meyer include Composite, Command, Abstract Factory, and
Visitor [Meyer06, p.10-11]. Six patterns required some fo rm of automated support to help integrate them into
libraries through reusable skeletons, or though components that address part of the problem. Only two patterns
could not even be partially componenti zed or handled through some automated support, namely F acade and
Interpreter; Facade is obvious, because it is completely dependent on the context and abstraction used, it
seems universal and language independent. Componentization makes pattern application in the implementation
phase much easier, but also fixates the behaviour to the functionality available. A componentized pattern is only
applied once, and then reused, possibly in a specialised fashion; it becomes a mere recipe instead of a full fi
fledged description. Partial componentization does not express the full knowledge expressed in the pattern
descriptions, thereby limiting the pattern applicability unless the component itself expresses pattern i like

qualities such as Openness and Generativity. The same is true for any Invisible or Formal implementation.

Meyer and Arnout recognise that the language used clearly affect the componentization process [Arnout06;
Meyer06, p.3,11], and that componentization affects pattern applicability [Meyer06, p.11]. Eiffel is not a
dynamic language as it employs static and strong typing, but many of its special features are used, such as

multiple inheritance, generics with or without bounds, contracts, agents, and cloning facilities [Arnout06, t.1].
Meyer and Arnout compare the Eiffel features used with featu res in Java (1.4), and question if the ideas used in
the Eiffel implementations can be used in Java, although they suggest that reflection might provide some
solutions [Arnout06]. Language impact and componentization are therefore closely related, which is also

demonstrated by the fact that AspectJ features augment the entire componentization process in the study by

Hannemann et al. As of Java 5, generics have been added to Java, but multiple inheritance and agents are not

Gunni Rode http://www.rode.dk/thesis Page63of 197

and

EVALUATING SOFTWARE DESIGN PATITERMSORAND BACKGROUND al {¢owQ{ ¢l 9{L{
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

supported. However, we fail to see how the lack of these features should prevent componentization of the

0 Gang o pattdfrs in dada, but agree that different solutions must be implemented.

4.4. Compari®n

This section offers a quick comparison between the features utilises in the examined studies and the features
found in Java 6. It also summarises common pattern behaviour identified in the individual studies as well as can
be expected bearing the differ ent scope of the studies in mind . The features listed in this section is not the final
list of Java 6 features and mechanisms used in the evaluation, but provide clues to which features may be

useful.

The studies on Common Lisp, Dylan, and Scheme all fooson making the o0Gang of Four 6 i
simpler using explicit language features found in the respective language s. The Aspect) and Eiffel
implementations focus on traditional OO values, primarily reus ability, where the language features used are

simply the means to an end. This evaluation is somewhere in between: we do not strive to make the

implementations simpler dsince that depends on the eye of the beholder dbut to illustrate how features in Java

6 can be utilised in the implementation proces s, which may spawn reusable components.

4.4.1. Features

Sullivan concludes that dynamic features such as reflection, multiple fidispatch, higherfiorder functions, and
predicate types have a positive i mpact 8ullivan02aaprd3].yNondg | of the
agrees, and claims dynamic features found in dynamic languages is exactly what makes the pattern application

simpler [Norvig96, p.10]. Java 6 in part supports two of these three dynamic traits described in section 4.2, i.e.

dynamic typing, runtime code modification, and interpretation. Java employs static typing in favour of dynamic

typing. Baring instrumentation (see the java.lang.instrumentation package), runtime code modification is

not directly supported by Java. The reflection mechanism does not allow for structural changes to classes or

objects, onl y bfeohna vyiléepuabjacts cah aacessaMeta data reflectively, such as classes and

methods, and dynamic proxies can be used to create new types at runtime. Java is compiled into byte ficode

that is interpreted at runtime.

The studies by Norvig and Sullivan suggest that Javaods ref
implementation. Of the features listed in table 4.2 and table 4.3, Java 6 supports several of them but to a

varying degree. Firstficlass types and functions are only partly supported. There is no way to create a regular

class or method onfithefifly, but dynamic proxies can create duck types at runtime (see section 7.1.2.4).

Besides creational restrictions, types and methods can be mani pul ated | i ke anficlaset her obj
o b j e c Mades correspond to packages. Multifi methods are not supported, but generic methods can be used

in a type safe manner for any applicable type. Closures are partly supported in form of inner cl asses.

Instantiation protocols and method combination must be explicit enforced by the developer, which is

unfortunate, as these features are found useful in Common Lisp, Scheme, and AspectJ.

Gunni Rode http://www.rode.dk/thesis Pageb4 of 197

EVALUATING SOFTWARE DESIGN PATITERMSORAND BACKGROUND al {¢owQ{ ¢l 9{L{
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

Meyer and Arnout | i st the features us e dpatterasrthey sueceeded ® ncgmpanéntizd=o ur 6
[Arnout06, t . 1] . The f e atdesigeibyfia e dr (iartadtsy, chieeritance, multiple inheritance,

generics, bounded generics, agents, and cloning facilities. Java 6 hasdirect support for inheritance, generics,

bounded generics, and cloning. Agents, or delegates, are not directly supported by Java 6, but can be emulated

by closures or using reflection. Desigrfi byfi contract and multiple inheritance are not supported. Java assertions

are uselessas they must be turned on to work . It may be possible to use dynamic proxies to emulate multiple

inheritance.

The Hannemann et al. study does not offer much concerning which Java features to use. The comparison

between features in C++ and Java 6 is already indirectly made in table 2.2 on page 15.

4.4.2. Patterns

It is interesting that Hannemann et al. , Meyer, and Arnout cannot componentize at least the same set of
pattern s, namely Adapter, Bridge, Decorator, Facade, Interpreter, and Template Method [Arnout0O6;
HannemannO2 t.1]. As illustrated in table 4.3, Sullivan has trouble providing simpler implementations for all of
these patterns except Adapter and Decorator. Norvig does not discuss Adapter, Bridge, and Decorator, perhaps
an indication of simpler implementations could not be made. This indicates the pattern abstractions ar e very
context and problem specific. It is also interesting that out of the twentyfit hr ee 0Gang of Fourdé patt
four have Class scope 6 and three of these are included in the above list, namely Adapter, Interpreter, and
Template Method. Hannemann et al. cannot componentize the last pattern with Class scope either, Factory
Method. The implementation level of these patterns thus corresponds to Informal. However, it does not say
anything conclusive about language dependencies. It could seem reasonable to assume that the same language
features are required regardless of language used, for example abstract classes in Template M ethod, packagefi
like functionality in Facade, and composition in Interpreter. Nonetheless, Common Lisp and Scheme hae no
notion of classes, so this is clearly not the case for Template Method, for example. Other language features may
also be applied. As an example, decoration and adaptation can be performed using dynamic proxies in Java 6. In
our view, no definitive conclusions can be drawn in this respect. This corresponds with our initial belief from
section 4.1.2 that the success of componenti zing a given pattern into a language or library feature depends

more on its abstraction and granu larity level than the language in which it is implemented.

For Java and Aspect], it is clear that Behavioural patterns are most easily componentized, with eigh t out of the
twelve: Chain of Responsibility, Command, Composite, Iterator, Mediator, Memento, = Observer, and Strategy.
The last four are Composite and Flyweight (Structural) and Prototype and Singleton (Creational) [Hannemann02
t.1] . Many of the Behavioural patterns have a containerfilike structure, or operate on a container filike
structure, for example Observer and Visitor, respectively. In our opinion, this makes them ideal for
componentization, as the abstraction is not that complicated. Of the fifteen patterns componentized by Meyer
and Arnout in Eiffel, there is an overlap with ten patterns from the Aspectd components. The only difference is
Iterator and Singleton, while Meyer and Arnout also provide components for Abstract Factory, Builder, Factory
Method (Creational), Proxy (Structural) , and State (Behavioural) [Arnout06, t.1] . This is indeed a close match,

and a strong indication that the abstractions described by Behavioural patterns are easily implemented in

Gunni Rode http://www.rode.dk/thesis Page65 of 197

EVALUATING SOFTWARE DESIGN PATITERMSORAND BACKGROUND al {¢owof
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

different languages. Common features used by Meyer and Arnout in these patterns include designfi byfi contract
invariants, inheritance, generics, and to some extent agents. Features used by Norvig and Sullivan for
Behavioural patterns primarily include first ficlass objects, multi i methods, method combination, closures, and

reflection.

While Hannemann et al. have trouble with Creational patterns, e.g. Abstract Factory, Builder, and Factory
Method, Meyer and Arnout provide componentization of these patterns as well. Sullivan and Norvig have no
problems with Creational patterns either, and utilise many o f the same features, for example first ficlass types

and instantiation and method protocols. Singleton in AspectJ is also implemented using instantiation protocols.

Structural patterns seem to be th e classification of patterns that generally causes most problems, regardless of
the scope of the study in question . Gamma et al. state that Structural patterns rely on a small set of language
features, namely single and multiple inheritance for patterns with Class scope, and object composition for
Object scoped patterns [Gamma95 p.219]. This indicates that alternative solu tions may be hard to implement.
Meyer and Arnout only provide componentization of a single Structural pattern, namely Proxy, and Hannemann
et al. of only two as mentioned abo ve, e.g. Composite and Flyweight . Still, several Structural patterns provide
very decent implementations according to Hannemann et al. in form of locality and (un fi)pluggability , for
example Adapter, Decorator, and Proxy [Hannemann02 t.1] . In unison, Sullivan and Norvig agree on simpler
implementatio ns for Adapter, Decorator, Fa cade, Flyweight, and Proxy. Again, there is an overlap of patterns ,

e.g. Adapter, D ecorator, Flyweight, and Proxy.

The examined studies show that languages have great impact on the pattern implementation s. The studies by
Hannemann et al. and Meyer and Arnout also show that implementations can also express many of the desired
pattern forces, such as Reusability, Interoperability, and Changeability , which are closely related to traditional

OO concepts.

4.5. Summary

Below, we list and then summarise the most important points from this chapter

— As already noted by Gamma et al., th e choice of language will affect the pattern application because

of inherent language fea tures and the level of support for the patterns

— The studies related to dynamic languages examined conclude that dynamic features and reflection

¢19{L{

have a positive impact on nearly all of the 0Gang

— The studies related to static languages ex amined conclude that many of t he 0 Gdesign

patterns can be componentized .

— Based on the examined studies and personal experience, we conclude that Java 6 will be useful for the
evaluation because of its mixture of static and runtime features , but that it is the pattern abstraction

more so than the language that determines the ease of implementation and componentization.

Gunni Rode http://www.rode.dk/thesis Page66 of 197

of

of

Fou

Four

EVALUATING SOFTWARE DESIGN PATITERMSORAND BACKGROUND al {¢owof
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

The level of implementation a given pattern can have in a programming language is classified as Invisible,
Formal, or Informal . Invisible indicates a pattern is so much a part of the language that its usage is not

noticed by the user. Formal indicates a pattern has an implementation in the language, but must be
instantiated or called for each use . Informal indicates a pattern is p art of a common shared vocabulary and

referred to by name, but must be implemented from scratch for each use based on its description.

The studies related to dynamic languages examined conclude that dynamic features have a positive impact on
nearlyalof t he 0Gang of ,ferexample reflaction e first 8class objects, method combination,
multiple fi dispatch, and higherfiorder functions . Several of the dynamic features discussed are present in Java

6, such as reflection , or can be simulated to some extent, for example via dynamic proxies .

The studies related to static languages examined conclude that it is possible to componentize several of the
0Gang of Four 6 ,oetshe danguggeaand pattem abstraction will determine if a given patter n
can be implemented as a component . We believe the success of componentizing a given pattern into a
language or library depends perhaps more on its abstraction and granularity level than the language in which
it is implemented. Behavioural patterns seem more manageable compared to Structural patterns , with
Creational patterns somewhere in between. This indicates support for advanced runtime features will be
beneficial . Patterns having Class scope are more difficult to work with compared to patterns with Ob ject
scope. Several of the language features used in the pattern components are present in Java 6 , for example

generics.

Gunni Rode http://www.rode.dk/thesis Page67 of 197

¢19{L{

EVALUATINGOFTWARE DESIGN PATTERESBALUATION a!l {¢o9wO{ ¢1 9{L{

TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

EvaluationApproach

Whenever anyo
they real/l

Because of the versatili ty of design patterns and the extensive human interaction required for utilisation, t

ne

says, fith

y mean, ino
1 iDave Parnas

here

is no straightforward way to benchmark the correlation between patterns and their implementations using test

frameworks, simulations, or other automated tools. Ideally, applying design patterns require human interaction

in all phases of the software development life ficycle, including in the final evaluation of the developed system.

The evaluation approach defined here, however, focuses on the practical application of th e 0 Ga

patterns using a given language catalyst. This chapter defines and explains a simple evaluation approach

ng
that is

independent of any given language. It can thus be used in similar evaluations with different language catalysts

C

and perhaps dif f er ent pattern systems providing they Thegoal af ¢

the evaluation is simply to implement all representative pattern functionality described in the Implementation

and Sample Code elements for each pattern, if possible, using a single language. The evaluation outcome is then

reported usingasubfis et of the familiar o6Gang of Four hswill allowus to.

perform a reasonably structured eval osystamphecausd thetindigduas r

implementations must be juxtaposed to identify common traits as well . We start by establishing the focus

of the

evaluation approach before we outline the approach itself. The approach requires both individual and collective
evaluations of the 0 Gacethe apdroach i defied, weauset itea state the goals for this

evaluation using Java 6 as the language catalyst, and we determine the language features that will be used.

5.1. Focus

Design patterns are not an exact science. There is no mathematical way to deduce if a pattern is correct or not

since it is based on empirical knowledge and experience, though several formalisation techniques have emerged

within the last few years (see for example [BaroniO3; Eden04 Taibi07]). The concept of patterns cannot exist

without human interaction, as patterns are described and interpreted by humans. The idea of a pattern must be

captured and described by the author (60 what does it do?06) ; based on
be inferred by the user (O0how is it done?0), b u

Neither part can be excluded. It is hard to speculate upon, which part is easier to evaluate. Evaluating

it
t t

well A

written pattern descriptions and/or implementations could be easier than evaluating pattern abstractions

because wellfi written descriptions could be more tangible than the concept they describe. The reverse c
also be true. The evaluation performed here does not evaluate the validity of the abstractions, merely pract

issues encountered during application from our point of view. How a user views the pattern will affect

ould
ical
the

application of it, and only through impl ementation and testing in the given scenario can the desired behaviour

be confirmed. Because of the human factor and the versatility of patterns, there is no straightforward way to

benchmark patterns using test frameworks, simulations, or other benchmarkin g tools. To evaluate pattern

sis to

implement them from a specific point of view, which is what th e evaluation approach conveys. This implies that

any evaluation of patterns will be subjective and that its conclusions must adhere to the initial point of vi

ew and

pattern

he inter|

Gunni Rode http://www.rode.dk/thesis Page68of 197

EVALUATINSOFTWARE DESIGN PATTERESALUATION al {¢owQ{ ¢l 9{L{
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

interpretation. Hence, the goals of the evaluation can only make sense if the viewpoints used are established

and explained.

Example5.1 T 1To illustrate how different points of views can affect th e evaluation, consider evaluating a
car, say an Aston Martin, for some magazine from the point of view of a mechanic and from the point of view of
the owner. The mechanic may approach the evaluation in a technical fashion, focusing on the design of the
engine, e.g. engine performance. The evaluation could investigate different parts of the engine in turn, e.g.
specific criteria, and comment on issues deemed relevant by the mechanic, as well as state a conclusion to the
overall performance. The conclusion mi ght be that the engine is inferior to a car in its price range. Furthermore,
certain issues could be independent of the specific engine (and car), and related to the general design of a
combustion engine. The owner of the car could instead evaluate the car based on its physical design compared
to other cars, perhaps focusing on the front, rear, interior, etc. The subjective conclusion could be that the car

is the most beautiful one. The result is two evaluations of the same car with completely different res ults, one
negative, and one positive. For others to use the evaluations to anything meaningful, the premise, e.g. point of
view, and the specific criteria used must be known. The point of view alone is not enough, because different
criteria could be used for t he same point of view. For exampl e,
durable is it? 6, wib ¢husemeans engine or car design depending on the viewpoint, yielding a positive
evaluation for the design of a combustion engine, whereas car desig ns traditionally have a much shorter

lifespan, i.e. less durable y

The general idea is that the evaluation and pattern implementations as a whole must try to express the Gamma
et al. themes and concepts described in section 2.1 on page 13. This makes sense because the individual
patterns by definition must express the themes and concepts regardless of the language used. Determining if
this is indeed the case is not easy. However, if we assume that the individual patterns as described by Gamma et

al. express the desired properties, then their implementation should as well. By trying to implement all
functionality described in the Implementation and Sample Code pattern elements, the pattern implementations

attempt to express the largest possible set of desirable pattern qualities. These pattern elements are chosen
because they explicitly focus on the practical application in context of specific languages and features . The
contained information can rather easily be compared to other languages . The focus is on the practical use of the

programming language to implement the design patterns, not on how the features are constructed internally.

The focus of the evaluation is practical and applied from the perspective of a practising designer and/or

developer. The o0Gang of F shauid e ysedtint aereatisic, varied, and a practical manner. This

requires an oOapplicationd of some size and complexity. I n
pattern applications than merely isolating indiv idual pattern implementations in trivial shell flike

implementations ; such implementations are plentiful to be found on the Internet. Our evaluation contains no
enervating o0Dogs and Catsdé exampl es; t b.iAs suchstheaevalMaiont er s T h e

merits rather advanced and complex implementations.

Gunni Rode http://www.rode.dk/thesis Paget9 of 197

EVALUATINGOFTWARE DESIGN PATTERESBALUATION a!l {¢o9wO{ ¢1 9{L{

TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

5.2. Description

The approach demands that all implementation issues related to pattern functionality described in the

Implementation and Sample Code elementsi n t he o0 Gang o fmusFlewddiessqdaand ifepossilde,
provide a solution in the language catalyst. It is sufficient to refer to similar solutions in other patterns , but the
features used must in any case be established. As both the implementation and the selection of features us ed
may be determined by the evaluator, the evaluation and its conclusions will be subjective. The detailed

evaluation of the solutions in the given language must be expressed using the Name, Intent, Structure,

Participant, and Implementation elements from t he 0Gang of Fourdé pattern format.

UML Class diagram in the Structure element and identification of the pattern participants expressed in the

solutions. While familiar pattern elements are used to describe the evaluation outcome, the contents are much

more detailed and specific compar ed t oThea doraparatiGaenayatianf Four o

must identify common traits in the pattern implementations and establish where various features are used and
what their purpose s are. Common traits include both pattern and language behaviour. The format of the
comparative evaluation is not defined since it is completely dependent of the language and features

investigated. It must be defined by the evaluation in question.

5.3. Evaluaton Goals

The purpose of the evaluation is to investigate how the use of languages features indigenous to Java 6 can affect
application of t he 0Gang of Findividudlly gnd totleetivetys. As the whole concept of pattern

correctness and behaviour is so elusive, the evaluation and its conclusions will be subjective. Hence, the
objective is not to provide a definitive conclusion as this goes against the very idea of design patterns . Instead,
the objective is to provide a realistic, but subjective, evaluation, which may be useful in disclosing how the
0Gang of Fouré patter ns . Ehegoal & aotta estblish ahat a giveo paternashoeld be

implemented using a set of specific features, but to illustrate that a given set of features may be useful in the

application of the pattern.

In order to perform a reasonably structured ewusngdaamti on of

we use the defined approach to implement all representative pattern functionality described i n the
Implementation and Sample Code pattern elements (in compliance with subfigoal Il from the introduction) . For

each pattern, the outcome of the detailed evaluation will thus be (subfigoal Il and IV):

An introduction to the pattern, describing it using the participants and wording found in [Gamma9§

(described in Name, Intent, and Parti cipants elements);

— Asimple description on how the pattern is implemented in this thesis, relating in particular the pattern

participants to implementation entities (Participants and Structure) ;

— A detailed UML Class diagram of the implementation , where pattern participants and behaviour are

clearly identifiable (Structure) ; and

— An explanation of how all information in the Implementation and Sample Code elements has been

Gunni Rode http://www.rode.dk/thesis Page70of 197

t

T

F

EVALUATINSOFTWARE DESIGN PATTERESALUATION al {¢owof
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

addressed and possibly solved (Implementation).

The outcome of the comparative evaluat ion will be (subfigoal IV):

A schematic presentation describing the use of Java 6 features in the pattern implementations ;

— Athorough, comparative analysis on the use of the investigated features, including ex amples, program

listings, and in fi part conclusions and identification of representative high flights;

— A comparative analysis between the pattern relationships described by Gamma et al. and relationships

expressed in the evaluation; and

— A casual classification on the level of pattern support Java 6 has based on the evaluation outcome.

The comparative evaluation is presented in chapter 7, while the detailed evaluations are presented in chapter

8. Furthermore, based on all evaluation results, overall evaluation conclusions will be made in chapter 9.

5.3.1. Features

As the last thing before we can conduct the evaluation, we need to selec t the set of features to investigate. A

fixed set is a necessity to keep the evaluation focused , but it must be realistic . Excluding interfaces, for
example, is not an option. The following core features will at least be investigated: type usage (classes,
enumerations, interfaces, abstract classes, and exceptions), implementation and inheritance, generics and
generic methods, inner and anonymous classes (closures), covariant return types, and varargs. Many of these
features have similar constructs in C++, such as classes generics, and covariant return types (for virtual

functions [Stroustrup91, p.647]), while others do not, such as generic methods and anonymous classes. Many of
these features are given, as writing any form of code in Java would otherwise not be possible. These features

also encompass many of the Eiffel features used in the study by Meyer and Arnout from section 4.3.4 .

As the related work examined in section 4.2 all concluded that runtime dynamic features aid in the application

of the 0Gang of Fourdé patterns, it is obvious to

evaluation. Reflective usage of class literals, constructors, and methods is examined, as well as dynamic proxies
that allow a type at runtime to implement a given interface using reflective methods for dispatching. The use of
annotations is also examined, especially when used reflectively at runtime. These features cannot be matched
by C++, but Smalltalk posses®s several similar features. Numer ous oOFBawmrgé odescri pti
discuss pattern functionality relying on runtime features that cannot be directly implemented in C++ , for
example using classes to create objects in Abstract Factory [Gamma95 p.90-91] and Factory Method [Gamma95

p.112], or changing the class of an object runtime for State behaviour [Gamma95 p.309].

J a v &Uultsiin mechanisms for synchronisation, serialization, and cloning are also examin ed. C++ cannot match

these mechanisms either.

The comparative evaluation will provide short descriptions of the relevant features where deemed necessary.

Gunni Rode http://www.rode.dk/thesis Page71of 197

¢1 9{L{
exami ne
ons (|

EVALUATINSOFTWARE DESIGN PATTERESALUATION al {¢owQ{ ¢l 9{L{
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

5.4. Summary

Below, we summarise the most important points related to the defined evaluation approach and its practical use

in this thesis:

— The evaluation approach has a practical and experimental approach and investigates if a given
language catalyst can express all represen tative pattern functionality described in the
Implementation and Sample Code elements. Whether or not specific functionality can be implemented

using the language catalyst must be documented.

— The evaluation approach requires detailed and comparative evalua tions. Detailed evaluations are

more structured and express evaluation outcome using the familiar Intent, Structure, Participant s, and

Il mpl ementation el ements fr omThe kenpataiva avgluatorf ideftiiea r 6 f or mat

common traits pertaining to pattern and language behaviour

— The evaluation goals include a schematic presentation of the pattern 1 feature usage and an infi
depth comparative language feature analysis of core language features , reflection , and special

language mechanisms.

— The evaluation goals also include a comparative analysis between the pattern relationships described
by Gamma et al. and relationships expressed in the evaluation and a casual classification on the

level of pattern support in Java 6 based on the evaluation outcome.

The evaluation tries to express the themes and concepts described by Gamma et al . as realistic as possible.
The pattern implementations will be nonfitrivial , and all relate to a few common model classes to convey the
sense of astandial one 0 ap plisreqaites noore&ffort dntbehalf of the reader. On the other hand, we
will strive to produce better and fully documented program code . The implementation in Java 6 will try to
express 0Bes asdéscribed byiBlooh Bloch01].

The objective of the evaluation is to provide a subjective investigation , hot a definitive conclusion as this

goes against the very idea of design patterns. The evaluaton may help i denti fy how the o0Gang of
patterns and Java 6 can cooperate by illustrating how a given set of features may be useful in the

application of a pattern. Three categories of features will be examined: core language features , reflective

capabilities , and special language mechanisms. Core language features include types, generics, closures,

covariant return types , and varargs. Reflective capabilities include class literals , methods, dynamic proxies ,

and annotations . Special language mechanisms include synchronisation , serialization , and cloning .

Gunni Rode http://www.rode.dk/thesis Pager2of 197

F

6.

EVALUATINSOFTWARE DESIGN PATTERESALUATION al {¢owof
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

Implementation

LDX #$00
loop: LDA dataX
STA$0400X
INX
CPX#$0A
BNEloop
RTS
data.BYTE$03,$36,$34,$20,$34,$05,$16,$05,$12,$21
i 1Gunni Rode

This chapter presents the practical details regarding the pattern implementations . We present the environment
setfiup used for the evaluation, including precise Java version and IDE . Since UML cannot describe all Java
features, we explain the UML extensions defined and used during the evaluation to aid the construction of UML
Class diagrams. To si mul at epml ilcaartgieorn 60 at han standal one patte
present the core model classes used directly or indirectly in all pattern implementations. The developed source
code and documentation is available on the thesis website; here, we only pre sent a package overview. Finally,

we describe how the pattern implementations can be executed and tested.

6.1. Software

JDK 1.6.0_01 is used with compiler compliance to version 6. The JDK is available for download at
http://java.sun.com/javase/downloads/index.jsp . JavaDoc is used to document the source code and is bundled

with the JDK. The standard doclet is used with a compliance level to version 6.

Eclipse 3.3 (Europa) is used as the main IDE. It is available at http://www.eclipse.org/downloads . NetBeans
5.5.1 from Sun is used as the secondary IDE since Eclipse utilises its own compiler. To ensure compatibility with
the standard compiler, NetBea ns is used to verify compilation & the compilers do not behave exactly alike.
Known issues are documented with //ISSUE: . NetBeans is available for download at http://www.netbeans.org
There is a single compiler erro r in NetBeans in the bridge.SequenceAbstraction<E> class, line 305, but it
does not concern core pattern functionality. In our opinion, it is a compiler bug (well, at least in one of the

compi |.&hem érg no problems in Eclipse.

A deliberate choice is that no plug fiins for Eclipse or NetBeans are required, not even JUnit . The OS used during

development is Microsoft XP Professional, SP2.

6.2. Modelling

Each pattern implementation is only illustrated with an UML Class diagram, similar to the Cl ass diagram slown in
figure 6.1 on page 76. Standard UML notations are not described here, but UML cannot describe all Java
features, such as final methods, annotations, or genetic bounds. Fortunately, it is extensible. Additional data

types, stereotypes, and attributes are thus defined and used as explained below in table 6.1.

Packages are rarely depicted. If so, it is only to illustrat e a clear separation between patterns and/or classes.

Gunni Rode http://www.rode.dk/thesis Page73of 197

¢19{L{

http://java.sun.com/javase/downloads/index.jsp
http://www.eclipse.org/downloads
http://www.netbeans.org/

EVALUATINSOFTWARE DESIGN PATTERESALUATION
T 0KS aDlFy3a 2F C2dNE LI G§dSNya

al {¢owQ{
AYLX SYSYGSR Ay Wk @I ¢

¢19{L{

Types include attribute and operation (constructor and method) information as deemed necessary. Two dots (..)

indicate additional attributes/operations not depicted. Open fiended subficlasses are generally not depicted, but

implied. All Class diagrams use Java types for clarity, pictured with their fully qualified generic name such as

java.util.List<E> . All types defined in this thesis are presented by their simple generic name, such as

Sequence<E> for dk.r ode.thesis.meta.model.Sequence<E> Inner classes are qualified by their

enclosing class, for example Sequence.State . Parameterised type realisations are depicted with rounded

corners («bind» relations) , which is a deviation from the UML standard. Realisati ons from type parameter Eto E

are not illustrated, only when bound to a concrete type such as java.lang.Integer , Or to a type parameter

with a different name, e.g. E to T. Bounds on type parameters use Java syntax, like E extends T , E super

S, or even wil dfi cards like ? super E . All this is illustrated in figure 6.1 on page 76. Comments are light grey.

Table 6.1 A UML stereotypes and properties

Name Description

«static class» Indicates a static inner class.

«enumeration» |Indicates an enumeration, depicted like a class, but with enumeration constants before

attributes.

«final class» Indicates a final class.

{final} A property indicating a final attribute or ~ method.

«exception» Indicates an exception type.

«throws» Indicates a relationship via a thrown exception.

{exception} Indicates a method that might throw an exception as {exception = type}.

«annotation»

Indicates a Java annotation type. Depicted like a class, using this stereotype.

«annotated»

Indicates a realisation of an annotated type. The non fidefault fields of the annotation are
bound like type parameters, for example «annotated» name:: value, ..

{synchronised}

A property indicating that a given method is synchronised, alternatively {synchronised = lock}.

{unmodifiable}

A property indicating that an object is unmodifiable, e.g. read fionly.

The UMLClass diagrams identify the pattern participants in a manner
t he

similar to a format suggested by Vlissides,

one of 0Gang of Fouré authors. Her e, a participant i

participant name in the upper left corner of the type.

6.3. Design

All pattern implementations in this eval uation relate to a few common model classes defined in the

dk.rode.thesis.meta.model package. This is part of the deliberate design choice to simulate larger and
more complex applications than could be achieved by disjoint stand i alone pattern implementatio ns, but also to
keep the project within reason , time and development wise. Individual implementations can thus be used in
other pattern implementations as well, expressing many of the pattern relations hips described by Gamma et al.
The primary type is the Sequence<E> interface, which represents a sequence that will deliver the next, or

current, value in given sequence on demand, such as for example a Fibonacci sequence or a sequence delivering

Gunni Rode http://www.rode.dk/thesis Pager4of 197

EVALUATINSOFTWARE DESIGN PATTERESALUATION al {¢owof
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

the names of the Simpsons family members. Sequences are more than mere iterators; they are value centric and
have a number of interesting properties that makes them useful in an evaluation such as this. Sequences always
have a lower bound, i.e. the initial sequence value, and may have an upper bound, limiting the numbe r of
possible values it can deliver. If a sequence is bounded and deliver consistent values, it will restart when the
upper bound is reached on an invocation of next() , i.e. the same values will be delivered again, in order. The
sequence values of bounded, consistent sequences are thus deterministic: two instances of the same sequence
type initialised identically will return the same sequence values if utilised in the same manner. Sequences may
also deliver unique values until reset or restarted. Sequencescan be reset explicitly, which will cause the
sequence to restart if it is consistent. The complete Sequence<E> interface is illustrated in figure 6.1,

including closely related types, but please refer to the JavaDoc for an infi depth description.

A given pattern implementation will either use or implement sequence functionality, but the Sequence<E>
type is often merely a catalyst to make the implementation and evaluation concrete. The Abstract Factory
implementation, for example, provides a reusable factory that can create any type of product, but the products
created are sequence related. Other implementations are more entangled with sequence functionality. The
implementation of the State pattern is a seq uence implementation delivering prime numbers, where each
concrete state represents internal sequence functionality, such as calculating prime numbers, delivering the
next prime number, restarting the sequence, etc. Usage includes the Adapter implementatio n, which adapts the
Sequence< E> interface to the java. util .lterator<gE> interface via composition, and the Interpreter

implementation, which evaluates expressions that directly or indirectly manipulate sequences.

Arguably, the choice to centre all pattern implementations on a few core model types may seem contrived.
There is no guarfrsiaeifitsdial £t 6 at e ® p @ e inqathel sgope ofothissthieslse The evaluation
of design patterns from a practical point of view requires a real context to be t ruly educational. Through real,
practical application of a pattern using a given language will the connection between the two become apparent.
Design patterns should be applied only where relevant. A design forcing the use of certain design patterns is not
only contrived, it goes against the very idea of design patterns. An evaluation like this one can only try to
imitate a real context . It has no choice but to implement each pattern within that context as it is the very
purpose of the evaluation. On the other hand, sequence functionality as described above is generic enough to
allow for many different applications of it, which we think the evaluation demonstrates. It helps convey the idea
of an over al | Atdiratglpnce, a geherabimpression of the design and implementation as whole
could be that it suffers from featuritis , but this is in fact not the case. On the contrary, reusing common
components such as sequences allow individual pattern application to become focused, added only what is
needed while still participating in non ftrivial overall implementations. Accordingly, several pattern
implementations define sub fiinterfaces of Sequence<E> to express the required functionality , and such types
represent the focus of the given pattern implementa tion. Examples include Composite, Observer, and Visitor
that defines the composite.CompositeSequence<E> , Observer.ObservableSequence<O, A, E>, and
visitor.TypeVisitableSequence<E> interfaces, respectively . The actual implementations need only be

concerned with specific pattern functionality as general sequence functionality can be reused or inherited.

Gunni Rode http://www.rode.dk/thesis Page75of 197

¢19{L{

EVALUATINGOFTWARE DESIGN PATTERESBALUATION a

L{ecowQOf

Tt 0KS

aDlFy3 2F C2dzNE

LI G 4GdSNya

AYLX SYSYGSR Ay Wk @I ¢

Figure 6.1 i Primary model classes

«interface»

Copyable
+copy() : E

«interface» i

Stringable

+ getStringablePolicy(policy : StringablePolicy<? super T>) : StringablePolicy<? super T>
+ toString(policy : StringablePolicy<? super T>) : java.lang.CharSequence

[Stringable<Sequence<E>> j

«bind» T::Segeunce<E>

«abstract class»
AbstractSequence

AbstractSequence(reset : boolean)
AbstractSequence(sequence : Sequence<? super E>)

+ getStringablePolicy(policy : StringablePolicy<? super Sequence<E>>)
+ toString(policy : StringablePolicy<? super Sequence<E>>)

«bind> E::java.lang.String

-

«abstract class»
ArraySequence

«interface» " «bind~ T::Sequence<E>
StrictCopyable -
(StrictCopyable<Sequence<E>>]
«package» 4} ______
dk.rode.thesis.meta.model t '
‘ B o
«interface» - ! ' i
Sequence P
+ bounded() : boolean R i # state : Sequence.State
+ consistent() : boolean | # AbstractSequence()
+ unique() : boolean
+current() : E I
+next() : E + reset()
+ reset() + state() : Sequence.State
+ state() : Sequence.State
+ copy() : Sequence<E>
| + toString()
1 CE
«interface» - ____]
ReversibleSequence
+reverse() : E [Sequence<java.lang.String> } 7777777
+ reversible() : boolean
+ copy() : ReversibleSequence<E>

EnglishAlphabetSequence |

«interface»
CompositeSequence

,,,,,,,,,,,,,,,,, _ «interface»

ObservableSequence

+ getSequences() : java.util.List<Sequence<? extends E>>
+ addSequence(sequence : Sequence<? extends E>) : boolean
+ removeSequence(sequence : Sequence<?>) : boolean

+ getObservers() : java.util.Collection<O>
+ addObserver(observer : O) : boolean

«interface»
MemorizableSequence

,,,,,,,,,,,,,,,,, o «interface»

+ removeObserver(observer : java.lang.Object) : boolean

StateableSequence

+ getMemorizableState() : SequenceMemento<E>
+ setMemorizableState(memento : SequenceMemento<E>)

+ getFunctionalState() : FunctionalState<E>

+ setFunctionalState(state: FunctionalState<E>) : FunctionalState<E>

«interface»
ValueVisitableSequence

«interface»
TypeVisitableSequence

+ <P> accept(visitor : SequenceValueVisitor<P>, argument : P)

+ <P> accept(visitor : SequenceTypeVisitor<P>, argument : P)

6.4. Source Code

Table 6.2 lists the packages containing the developed source code. Approximately 300+ Java files have been

developed, yielding approximately 400+ class files (including inner classes and enumeration constants).

All types

are fully documented using JavaDoc, including packa ges. The source code can be downloaded from the thesis

website at http://www.rode.dk/thesis

Gunni Rode http://www.rode.dk/thesis

Page76 of 197

¢19{L{

http://www.rode.dk/thesis

EVALUATINSOFTWARE DESIGN PATTERESALUATION al {¢owQ{ ¢l 9{L{
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

The reader of this thesis is expected to browse the generated JavaDoc to get a better understanding of the
different imp lementations. The primary implementation of each pattern is implemented in each own aptly
named package, e.g. dk.rode.thesis.abstractfactory for Abstract Factory. A given pattern
implementation may naturally be utilised by other patterns, and additional ap plications of a given pattern may
be present in the source code as well, for example anonymous classes used as onfithefifly adapters. Several
Meta packages and classes have been developed to aid the individual pattern implementations . An example is
the dk.ro de.thesis.meta.model package as described in the previous section, or the
dk.rode.thesis.meta.reflect package that supplies the core reflection functionality used in different
pattern implementations. They are listed in grey cells in table 6.2 below. Refactoring common code into Meta
classes is also a good design choice in compliance with traditional OO concepts instead of implementing
everything from scratch in each pattern im plementation. | t i s the contents of eamech Oopatte
evaluated in chapter 8, but Meta class functionality will be included if it is essential for the pattern

functionality.

Table 6.2 i Source code packages

Package Description

dk.rode thesis.abstractfactory Implementation of Abstract Factory.
dk.rode.thesis.adapter Implementation of Adapter.
dk.rode.thesis.bridge Implementation of Bridge.

dk. rode.thesis.builder Implementation of Builder.
dk.rode.thesis.chainofresponsibility Implementation of Chain of Responsibility.
dk.rode.thesis.command Implementation of Command.
dk.rode.thesis.composite Implementation of Composite.
dk.rode.thesis.decora tor Implementation of Decorator.
dk.rode.thesis.facade Implementation of Facade.
dk.rode.thesis.factorymethod Implementation of Factory Method.
dk.rode.thesis.flyweight Implementation of Flyweight.
dk.rode.thesis.interpreter Implementation of Inteprete .
dk.rode.thesis.iterator Implementation of Iterator.
dk.rode.thesis.mediator Not implemented (but evaluated) .
dk.rode.thesis.memento Implementation of Memento.
dk.rode.thesis.meta Annotations to identify and classify pattern participants.
dk.rod e.thesis.meta.log The log framework used.
dk.rode.thesis.meta.model The core model used as the base for all patterns.
dk.rode.thesis.meta.reflect Reflection utilities.
dk.rode.thesis.meta.reflect.proxy Dynamic proxy utilities.

dk.rode.thesis.me ta.test Defines the test setup.
dk.rode.thesis.meta.util Various general utilities.
dk.rode.thesis.observer Implementation of Observer.

Gunni Rode http://www.rode.dk/thesis Page77 of 197

EVALUATINSOFTWARE DESIGN PATTERESALUATION al {¢owof
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

Table 6.2 i Source code packages

Package Description

dk.rode.thesis.prototype Implementation of Prototype.
dk.rode.thesis.proxy Implementation of Proxy.

dk.rode.thes is.singleton Implementation of Singleton.
dk.rode.thesis.state Implementation of State.
dk.rode.thesis.strategy Implementation of Strategy.
dk.rode.thesis.templatemethod Implementation of Template Method.
dk.rode.thesis.visitor Implementation of Visito r.

Each pattern package contains a doc- files folder containing an UML Class diagram for the implementation.
This ensures that the diagram is included in the generated JavaDoc. The diagrams are included in this thesis as

well, in the relevant evaluation s ections.

In the evaluation, full package names will rarely be used for the developed source code. Package prefix
dk.rode.thesis is always implied if not already included in a given type name. Once a given type or package
has been referenced in a context, e.g. section or paragraph, the remaining package information will be ignored

as well. Example: if the full type name is dk.rode.thesis.composite.CompositeSequence<E> ,
composite.CompositeSequence<E> will suffice, and additional references in the same conte xt will
thereafter simply reference CompositeSequence<E> . Java types are fully qualified, or go by their simple
name when referenced again within the same context, as for example java.util.NavigableMap<K,V> and

NavigableMap<K,V>

6.5. Tesing

Each pattern package includes a Main class that will execute the tests devised to illustrate the developed
pattern functionality, e.g. dk.rode.thesis.abstractfactory.Main . The tests are not meant as a
replacement for JUnit testing, but to illustrate pattern functionality . They can each be run directly, but the
dk.rode.thesis.meta.test package furthermore includes two separate test classes, namely AllTests and
IntegrityTests . The first runs all individual pattern test s in alphabetical order, while the latter perform
integrity tests on all accessible dk.rode.thesis.meta.model.Sequence< E> implementations defined in the
individual pattern implementations. Note that certain test files are required to run the Template Method tests

and that Bridge and Memento, as well as the logger, will write to disk.

To record the outcome of the test s, two types of logs exist: a global log and logs associated with a specific class.
The output is generally verbose as all objects in the evaluation implement meaningful toString()
representations as recommended by Bloch [Bloch01, p.42-44]. It is possible to control the log level explicitly in
the individual tests by altering the source code, of course, but it is easier to supply a proper boolean value for
the i log argument to each test class, indicating whether or not logs associated with individual classes should be

activated or not, e.g. java Main Tlog true . For additional verbose logging, the 71 log.verbose parameter

Gunni Rode http://www.rode.dk/thesis Page78of 197

¢19{L{

EVALUATINSOFTWARE DESIGN PATTERESALUATION al {¢owQ{ ¢l 9{L{
TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

can be used in a similar fashion. Notice there is no = operator between argument keys and associated values.

The tests are designed so the global log should suffice to convey the intent.

The logs will output to either System.out or to a file. This is determined by the system property
dk.rode.thesis.log . A string value of of i | e @uotatienxntatksy, avill lngyto a file in the relative
directory log ; all other values will cause logging to System.out . File logs will append to existing logs. System

properties are supplied with the 71D option during execution, as in java 1 Ddk.rode.thesis.log=file

Main 7ilog true . Notice the use of = unlike normal supplied arguments.

6.6. Summary

We have implemented the 0Gang, falfy doEBumented witlp Jataboe r.rnThe sburce Java 6
code expressest he o0Best Pr act iycBiosho[Blathdy whemnebere gbssible. Each specific pattern

implementation has a dedicated package , but may be used in other pattern implementations as well. All

implementations basically operate on the same core model classes to simulate oOapplicationod us a
Addi tional use of the 0Gang of Four dforexantple inrMets classesoagsp | i ed wh
part of another pattern implementation. Test classes have been developed to illustrate pattern usage

Gunni Rode http://www.rode.dk/thesis Page79of 197

EVALUATINGOFTWARE DESIGN PATTERESBALUATION a!l {¢o9wO{ ¢1 9{L{

TGKS aDFy3a 2F C2dz2NE LI GGSNYya AYLXESYSYGSR Ay Wk @ c

ComparativeEvaluaton

Program testing can be used to show the presence of bugs,
but never to show their absence!
T TEdsger W. Dijkstra

The comparative evaluation provided in this chapter presents an analysis of the pattern implementations that
correlate patterns based on the Java 6 features and mechanisms used in their application. Three categories of
Java 6 features are examined: core language features (types, generics, inheritance, etc .), reflection (class
literals, dynamic proxies, annotations, etc .), and special language mechanisms (synchronisation, serialization,
cloning, etc.). The core language features category primarily encompass static features, the reflection category
primarily runtime features, while special language mechanisms category target s both. Based on the analysis, we
provide observations on how C++ features used to implement core pattern functionality can be implemented in
Java 6. We also present a schematic illustration o f the pattern relationships expressed in the implementations,
comparing them to the relationships described by Gamma et al. We furthermore outline traits of each pattern

implementation in relation to pattern implementation level s as described by Norvig [Norvig96, p.7] .

7.1. Language Features

Table 7.1 on page 82 summarises the most important language features and mechanisms applied in the
i mpl ementations of the BoGamparisanfpattEro applidatiop aahd featuness utilised in
developed Meta classesare also illustrated . A set of legends is usedto describe the feature use in the specific
pattern implementations . Regardless of the legend used, an entry in the table indicates that the feature was

somehow used in the pattern implement ation. The most interesting representative pattern functionality and
feature combinations are highlighted with a dark fiblue background. They are addressed individually in section

9.2, after the general feature us age has been investigated. The legends are:

— X the feature is used directly in the pattern implementation. For example, the Singleton pattern uses
inheritance to allow specialisation of singleton types in the singleton package, and the legend used

for the Singleton i Inheritance table entry is thus X.

— P: the feature is used to implement the pattern functionality in another Pattern implementation
because of the close relationships between patterns . For example, anonymous inner classes are used to
define concrete adapter strategies in the Apapter implementation in the adapter package, but the
actual Strategy implementation in the strategy package uses enumerations to define concrete
strategies. Hence, P is used as the legend for the Strategy i Inner classestable entry (P thus refers to
Adapter).

— M: the feature is used in Meta classes essential for the pattern implementation. This is a design issue
related to refactoring performed during the evaluation : had the feature not been used in the Meta
classes, it would have been used directly in the pattern implementation. For example, classilike

adapters are not implemented directly in the Adapter pattern package, but clasgilike adapters

Gunni Rode http://www.rode.dk/thesis Paged0of 197

EVALUATINGOFTWARE DESIGN PATTERESBALUATION a!l {¢co9wOf

T UKS

aDIFy3a 2F C2dNE LI GGSNyYya AYLXSYSYGSR Ay WI @ c

facilitated by dynamic proxies are used extensively in the meta.reflect.proxy.Pr oxyFactory

Meta class. M is therefore used as the legend for the Adapter i Dynamic proxies table entry.

E: the feature is only used in classesExternal to the core pattern participants described by Gamma et
al., but such classes are still implemented in th e specific pattern package. For example, the Command
pattern implementation includes the command.CommandProcessor class which is not described by
Gamma et al., but by the 0 POSAG6 Co mma n dBuRhmarm@6sp2/f pattern . As aly the
processor implementation use generic methods, and not the actual command.Command<E> types

themselves, the legend is E for the Commandi Generic Methods table entry .

D: the feature is Derived because it depends on the design of other patterns and/or classes Had the

used classes not utilised the feature, the pattern implementation would (probably) not have used it

¢19{L{

eitherr This is the only | egend FortesmplectheuDetomtorgpatterrause8 may b e 6 .

generics because the decorated type is th e generic meta.model.Sequence<E> type. Hence, the table

entry Decorator i Genericsis labelled D.

Functi onal it yfromodtherhpatteing ésdndt included in table 7.1. For example, most pattern

implementations in some form or another operate on the Meta model classes, in particular the Sequence<E>

interface. As this interface extends the prototype. Strict Copyable< T> interface to become a prototype,

most Sequence <E> implementations will use covariant r eturn types to specify the precise type of sequence

from the inherited copy() method. This is registered for the Prototype pattern, but not for other patterns that

use covariant return types for this purpose only.

Sections 7.1.1 8 7.1.3 discuss the observed use of features in more detail. The program listings all represent

actual program code, albeit truncated as needed. Several listings represent multiple features, but will be

presented in the section deemed most relevant; some cross fireferencing is thus required. Table 7.1 and the

summaries presented really cannot stand alone. When reading this chapter, the evaluation chapter s for each

pattern will in all likelihood frequently have to be consulted because of the large amount of information that

has to be described: patterns, participants, features, etc. Consulting the JavaDoc is not a bad idea either.

7.1.1. Core Language Features

This section describes the core language features used in the various pattern implementations. Java has many

features in common with C++, lacking some, but also provides others not found in C++.

7.1.1.1. Inheritance, Abstracdasses, and Interfaces

The evaluation differentiates between (abstract) class fibased inheritance and interface implementation.

Standard use of polymorphism and inheritance is not explicitly addressed, as it is fundamental in any OO design.

Inheritance is included only if it is part of the core p attern functio nality as for example the Template Method

pattern

; this is also true for interfaces and abstract classes. In our experience, abstract classes have a slightly

different purpose in Java compared to similar C++ designs : in Java, abstract classes often implement the basic

traits of an interface for convenience while C++ use (abstract) classes for implementation inheritance.

Gunni Rode http://www.rode.dk/thesis Paged1of 197

EVALUATINGOFTWARE DESIGN PATTERESBALUATION

al {¢owQ{

T UKS

aDFy3

Table 7.1 Us e

Pattern

Feature

Abstract Factory

2F C2dzNE

of

Adapter

Java

Bridge

Builder

Chain of Responsibility

LI GG SNya

Command

6

f eat ur emtteinnmpterentatidrda n g

Composite
Decorator

Facade

Factory Method

AYLX SYSYGSR Ay Wk @I

Flyweight

Interpreter

Iterator

Mediator (not implemented)

Memento

Observer

Prototype

Proxy

Singleton

State

Cc

of

Strategy
Template Method
Visitor

Meta classes

Fou

Core Language Features

Inheritance

X

x

x

Abstract classes

Interfaces

Generics

X | X | X | X

O X | X | X

O X | X | X

O | X

X | X | X | X

O X | X | X

X | X[X[X

Generics (bounded)

O |0 | X

O|0 | X |X|X

OO0 | X | X|X

O|0 | X |X]|X

Packages

Nested classes

Anonymous classes

Enumerations

Exception handling

Generic methods

Covariant return

EEBuUll < X

Varargs

X | X |{m|X

X | X [O| X]| X

o
X
XIX[X|IX|X|X[X|X]|X|X|[X|[X]|X

Reflection

Class literals

Type literals

Constructors

Methods

Dynamic proxies

Annotations

X

X | X[X[X]|X]|X

Special Language Mechani

sms

Synchronisation

Serialization

Cloning

Class loader

m| X |O| X

Weak references

Meta classe s

X

X

X

X

X

X

X | X

X: used directly in a pattern participant;

P: used as part of another pattern implementation;

M: used in Meta

classes; D: derived usage; E: used in related, but non f participant, classes; dark fi blue squares: highfi lights.

Gunni Rode http://www.rode.dk/thesis

Paged2 of 197

¢19{L{

