

Evaluating Software Design Patterns

τ the òGang of Fouró patterns implemented in Java 6

Masterõs Thesis, Computer Science

Gunni Rode

August 2007

Department of Computer Science

 Faculty of Science

University of Copenhagen

Denmark

EVALUATING SOFTWARE DESIGN PATTERNS a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www. rode.dk/thesis I

Dedicated to

Filur & Lurifax

ð for keeping me company

Theodor Rode von Essen

ð for keeping the smile on my face

But first, and foremost, dedicated to

Marina Rode von Essen

ð for keeping me!

EVALUATING SOFTWARE DESIGN PATTERNS a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www. rode.dk/thesis II

Preface

Life is what happens to you while

 you're busy making other plans.

ïï John Lennon

This thesis concludes a òwork in progressó that has lasted over a decade ð my Masterõs Degree in Computer

Science; finally ! I began studying in 1995, but was fortunate enough to get a very nice job within the firs t two

years; a job that I hold and tre asure to this day. Combined with life in general, t his naturally slowed things

down, but almost never to a complete halt, often because of friendly reminders from my family and friends.

Thesis ïï Formally, the workloa d of the project this thesis represents is 30 ECTS, and it was completed under

the supervision of Professor Eric Jul at the University of Copenhagen, Denmark . The work carried out was done

from late 2006 to August 2007, and the defence was held on November 2nd, 2007. This public version contains

only small changes from the actual thesis handed in for grading , and t he presentation delivered at the oral

defence is available as [Rode07b]. During this period , many things happened in my life , good and bad. First and

foremost, I became a father to a wonderful son named Theodor Rode von Essen; an eyeñopener, to say the

least, concerning such concepts as time, family, and especially oneself. Unfortunately, m y family and I also

experienced several deaths in the near family , especially that of my beloved father, Henning Rode, who died

only a week before my defence. Secondarily, the company where I work was sold causing quite a few changes in

my everyday life. I studied for the Java 5 certifi cation , but never got around to take the exam (wonder why?).

My wife and I had our kitchen completely renovated over a strenuous period of almost six months. And then

some... ! All these things one way or another influenced this thesis, but t he reality is also that I at times was not

focused enough. I did not manage to state precise and tangible goals for the work to be performed, causing me

to pursue and writing about many different areas of interest related to OO and design patterns .

Originally, t his project was intended to evaluate different aspects related to the twoñway connection between

the òGang of Fouró patterns and the programming languages used for implementation . Much work was put into

formulating several evaluation criteria in a consistent format , albe it in broad term s. Simplified e xamples of

criteria include how the use of natural language affects the applicability of pattern X in language Y, or vice

versa; if the naming of pattern participants is consistent and independent of specific OO programming

paradigms; or how easy is it to implement pattern X in language Y ? Java 6, and possibly other languages, should

act as the catalyst s for the evaluations , but the criteria spawned more questions than answers because they

were more theoretical than practical in nature. However, t he intent had always been to make this a practical

project with emphasis on the practical application of design patterns, but the evaluation approach seemed to

collide with this. Hence, when I discovered several articles on pattern application utilising specific language

features that caused òsimpleró implementations, or even pattern componentization s, in various languages, the

idea arose to compare such findings with Java 6 implementations of the òGang of Fouró patterns. I also realised

that the òGang of Fouró patterns should be evaluated as a whole rather than an arbitrary subñset because the

patterns were published as a complete pattern system with many internal relationships and similarities . The

work performed is still an evaluation , but focus thus moved from several forms of evaluation of a handful of the

EVALUATING SOFTWARE DESIGN PATTERNS a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www. rode.dk/thesis III

òGang of Fouró patterns to more concise and practical investigation of how Java 6 paradigms can influence the

application of all the òGang of Fouró patterns. The final work description for the work performed is approved by

Eric Jul and is available as [Rode07a].

Thesis Website ïï This thesis has a dedicated website at http://www.rode.dk/thesis , which offers this thesis

in a slightly modified online HTML version; the presentation given at the oral defence; the developed source

code; generated JavaDoc; etc.

Acknowledgements ïï I can honestly say, without a doubt, that I would never have been able to complete my

degree, and especially this thesis, without the love and continuous support from my beloved wife, Marina.

Though alien to computer science, she also offered much appreciated assistance with proofñreading and layout .

Jonna von Essen also helped with last minute, but very effective, proof ñreading.

My workplace and colleagues also made this thesis possible as they graciously allowed me to take time off to

complete it , thereby burdening themselves with even more work. Several people provided invaluable critique,

some of which I unwisely ignored J. Morten Wolf assisted with harsh, but earnest proof ñreading. Jesper Steen

Møller provided much appreciated input and Erik W. Rasmussen did as well. Furthermore, Brian Grunnet lent me

practically all the books cited in this thes is; some of them have since become mine due to coffee stains and

undeniable traces of claws from a cat.

Finally, I wish to thank Eric Jul for allowing me to undertake a somewhat unorthodox but tangible and handsñon

thesis that is actually highly relevant to me. I suspect this is also the case for my coñworkers and the likes .

Ericõs pragmatic approach to this project, even after I changed focus half way through, as well as our many

discussions, helped me overcome seemingly overwhelming obstacles to eventua lly complete this thesis.

Prerequisites ïï The reader is assumed to have an understanding of computer science corresponding to at least

graduate level. Familiarity with Object ñOrientation and Java is expected, but inñdepth knowledge of pattern

theory is not required as this thesis presents an introduction to pattern theory and how it relates to OO .

However, practical experience with software design patterns and especially the òGang of Fouró design patterns

is a definite plus. A sense of humour is not a bad thing either.

Keywords ïï Design Patterns; Gang of Four; Java 6; ObjectñOrientation; Language Features

http://www.rode.dk/thesis

EVALUATING SOFTWARE DESIGN PATTERNS a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www. rode.dk/thesis IV

Colophon
This thesis is written in UK English, set with Trebuchet MS, 9pt, using a line spacing of 1.5 . Program listings are

illustrated with Courier New, 6pt , and syntax highlighted . Program code inlined in normal text is written using

Courier New, 10pt, i n grey. Quotations are written using Times New Roman, 9pt, in italics; bold text within

quotations identifies the author being quoted, or emphasises issues deemed important by the undersigned.

Important terms or names, such as design pattern names, classifications, concepts, and type names are

capitalised, as the Factory Method pattern or the Equilibrium property pertaining to pattern quality .

References are alphabetised by the surname of the primary author, followed by the year of publication if

possible. Citations are written in square brackets, separated by semicolon in alphabetical order , including the

name and possible year with two digits only, for example [Alexander77; Lea00]. Page, table, figure, or item

references are prefixed with p, t, f, and i, respectively , for example [Lea00, i.12] for the twelfth FAQ item

presented there . Page references are supplied if possible and only if the reference in question has explicit page

numbers, for example [Gamma95, p.6]. An item will be referenced the first time encountered in the context at

hand, and only again if the context warrants it.

Figures, tables, program listings, and examples are enumerated for easy reference. The enumeration format is

the chapter number followed by a dot and a sequence number local to the chapter, e.g. 2.1, 2.2, 3.1, 4.1, 4.2,

4.3, etc. References to chapters, sections, figures, tables, program listings , and examples are set in boldñface,

as figure 2.1. Crossñreferences spanning several pages will generally be followed by the page number to the

reference in question, as figure 2.1 on page 13.

EVALUATING SOFTWARE DESIGN PATTERNS a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www. rode.dk/thesis V

Abstract
In this project, we perform an evaluation of the òGang of Fouró design patterns from a practical and

experimental point of view using Java 6 as the implementation language. We investigate how Java 6 language

features affect the application of the òGang of Fouró design patterns, individually and collectively. The

investigation focuses on how the practical use of language features can affect the design pattern

implementations , not how the features are constructed . To perform a reasonably structured and verifiable

evaluation, w e define a general evaluation approach on how to evaluate the òGang of Fouró patterns using a

language as a catalyst. The premise is to implement all pattern functionality described in Implementation and

Sample Code elements in the òGang of Fouró pattern descriptions, as these are the elements that primarily

target the practical implementation , and evaluate the outcome .

Using the defined approach, we implement the òGang of Fouró patterns in Java 6 and investigate use of core

language features (types, generics, closures, etc .), reflection (class literals, dynamic proxies, annotations,

etc.), and special language mechanisms (synchronisation, serialization, cloning, etc .). The individual pattern

evaluations show that with a few exceptions, all pattern functionality described in the Implementation and

Sample Code elements, including Metañinformation, can be implemented or simulated in Java 6 using the

investigated features. The comparative evaluation shows that Javaõs mixture of static and dynamic features are

very well suited to express the òGang of Fouró pattern functionality. Creational and especially Behavioural

patterns benefit from dynamic usage, while the static features make the implementations more robust , possibly

reusable, and clarify pattern intent . The implementation s furthermore provide novel , or at least alternative,

approaches on how to implem ent Abstract Factory, Factory Method, Memento, Observer, Proxy, Singleton, and

State in Java 6.

EVALUATING SOFTWARE DESIGN PATTERNS a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www. rode.dk/thesis VI

Resumé
Dette projekt omhandler en evaluering af óGang of Fouró designmønstrene (engelsk: design patterns) ud fra en

praktisk og eksperimentel tilgang, hvor Ja va 6 er programmeringssproget, der bruges til implementeringen . Vi

undersøger, hvordan sprogegenskaber i Java 6 p¬virker anvendelsen og implementeringen af óGang of Fouró

designmønstrene, individuelt og sammenholdt for alle mønstrene . Evalueringen fokuserer på, hvordan den

praktiske brug af konstruktioner i Java kan påvirke implementeringen af mønstrene, ikke hvordan

konstruktionerne selv er konstrueret. For at udføre en rimelig struktureret og validerbar evaluering, definerer vi

en generel fremgangsmåde ti l at evaluere óGang of Fouró mßnstrene ved brug af et givent programmeringssprog

som katalysator . Udgangspunktet er, at al mønsterfunktionalitet beskrevet i óImplementation ó og óSample

Codeó elementerne i mßnsterbeskrivelserne skal forsøges implementeret o g resultatet derefter analysere s, idet

disse er de primære elementer med fokus på den praktiske anvendelse.

Vi implementerer óGang of Fouró mßnstrene inden for rammerne af den definerede fremgangsm¬de og

undersøger brugen af grundlæggende sprogegenskaber (type r, parameteriserede typer , etc.), refl eksion

(klasser, dynamiske proxier, annot eringer, etc.), samt specielle sprogmekanismer (synkronisering, serialisering,

kloning, etc.). De individuelle evalueringer af mønstrene viser , at al mønsterfunktionalitet fra óImplementation ó

og óSample Codeó elementerne kan implementeres eller simuleres i Java 6 ved brug af de undersßgte

konstruktioner med få undtagelser . Den sammenlignende evaluering viser, at Javas blanding af statiske og

dynamiske egenskaber er endog meget god til at udtrykke funktionalitet en beskrevet i óGang of Fouró

mønstrene. óCreationaló, men isÞr óBehaviouraló mßnstre drager fordel af de dynamiske egenskaber, mens

statiske egenskaber medvirker til , at implementeringerne bliver mere robuste , muligvis genbrugelige, og

tydeligør mønsterfunktionalitet . Endeligt frembringer evalu eringen nye, eller i det mindste alternative, tilgange

til at implementere óAbstract Factoryó, óFactory Methodó, óMementoó, óObserveró, óProxyó, óSingletonó, og

óStateó i Java 6.

EVALUATING SOFTWARE DESIGN PATTERNS a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www. rode.dk/thesis VII

Table of Contents

Preface II

Colophon IV

Abstract V

Resumé VI

Table of Contents VII

List of Figures XI

List of Tables XI

Program Listings XIII

1. Introduction 1

1.1. Motivation 1

1.2. Goals 3

1.2.1. Demarcations 4

1.3. Thesis Summary 5

1.3.1. Part One ñ Theory and Background 5

1.3.2. Part Two ñ Evaluation 8

1.3.3. Work Performed 10

2. Object ñOriented Development 12

2.1. ObjectñOriented Concepts 13

2.1.1. Concepts 15

2.1.2. Themes 18

2.2. ObjectñOriented Methods 19

2.2.1. Patterns 19

2.3. Unified Modelling Language 20

2.3.1. Patterns 20

2.4. ObjectñOriented Analysis 21

2.5. ObjectñOriented Design 22

2.5.1. Patterns 23

2.6. ObjectñOriented Programming 27

2.6.1. ObjectñOriented Programming Language 28

2.6.2. Patterns 29

2.7. Summary 30

EVALUATING SOFTWARE DESIGN PATTERNS a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www. rode.dk/thesis VIII

3. Patterns 32

3.1. Christopher Alexander 32

3.2. Software Patterns 35

3.3. Pattern Quali ties 36

3.4. Pattern Forces 38

3.5. Pattern Elements 39

3.5.1. òGang of Fouró Format 40

3.6. Pattern Formalism 42

3.7. Pattern Collections 43

3.7.1. òGang of Fouró Pattern System 44

3.8. Pattern Evolution 47

3.8.1. Mining 47

3.8.2. AntiñPatterns 48

3.8.3. Proto Patterns 49

3.8.4. Piecemeal Growth 49

3.9. Pattern Application 50

3.9.1. Usage 50

3.9.2. Understanding 51

3.10. Summary 52

4. Related Work 54

4.1. Language Support 54

4.1.1. Implementation Level 55

4.1.2. Discussion................................ 56

4.2. Dynamic Languages 57

4.2.1. Common Lisp and Dylan 57

4.2.2. Scheme 58

4.3. Static Languages 60

4.3.1. C++ 60

4.3.2. Java 60

4.3.3. Java and AspectJ 61

4.3.4. Eiffel 63

4.4. Comparison 64

4.4.1. Features 64

4.4.2. Patterns 65

4.5. Summary 66

EVALUATING SOFTWARE DESIGN PATTERNS a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www. rode.dk/thesis IX

5. Evaluation Approach 68

5.1. Focus 68

5.2. Description 70

5.3. Evaluation Goals 70

5.3.1. Features 71

5.4. Summary 72

6. Implementation 73

6.1. Software 73

6.2. Modelling 73

6.3. Design 74

6.4. Source Code................................ 76

6.5. Testing 78

6.6. Summary 79

7. Comparative Evaluation 80

7.1. Language Features 80

7.1.1. Core Language Features 81

7.1.2. Reflection 101

7.1.3. Special Language Mechanisms 117

7.1.4. Feature Observations 125

7.2. Pattern Relationships 127

7.3. Implementation Level 131

7.4. Summary 133

8. Detailed Evaluation 136

8.1. Creational Patterns 136

8.1.1. Abstract Factory 136

8.1.2. Builder 138

8.1.3. Factory Method 140

8.1.4. Prototype 141

8.1.5. Singleton 143

8.2. Structural Patterns 145

8.2.1. Adapter 145

8.2.2. Bridge 146

8.2.3. Composite 148

8.2.4. Decorator 150

8.2.5. Facade 151

8.2.6. Flyweight 153

8.2.7. Proxy 154

EVALUATING SOFTWARE DESIGN PATTERNS a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www. rode.dk/thesis X

8.3. Behavioural Patterns 156

8.3.1. Chain of Responsibility 156

8.3.2. Command 158

8.3.3. Interpreter 160

8.3.4. Iterator 163

8.3.5. Mediator 164

8.3.6. Memento 165

8.3.7. Observer 167

8.3.8. State 170

8.3.9. Strategy 172

8.3.10. Template Method 173

8.3.11. Visitor 175

8.4. Summary 178

9. Evaluation Conclusions 179

9.1. Implementation Compliance 179

9.2. Language Features 180

9.3. HighñLights 180

9.3.1. Abstract Factory and Factory Method 180

9.3.2. Memento 181

9.3.3. Observer 182

9.3.4. Proxy and State 184

9.3.5. Singleton 185

9.4. Evaluation Approach 186

10. Conclusion 189

10.1. Perspective 189

10.2. Results 189

10.3. Future Work................................ 191

10.4. Final Remarks 192

Bibl iography 193

EVALUATING SOFTWARE DESIGN PATTERNS a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www. rode.dk/thesis XI

List of Figures

Figure 2.1 ñ OO development lifeñcycle and patterns 13

Figure 6.1 ñ Primary model classes 76

Figure 8.1 ñ Abstract Factory UML Class diagram 137

Figure 8.2 ñ Builder UML Class diagram 139

Figure 8.3 ñ Factory Method UML Class diagram 140

Figure 8.4 ñ Prototype UML Class diagram 142

Figure 8.5 ñ Singleton UML Class diagram 143

Figure 8.6 ñ Adapter UML Class diagram 145

Figure 8.7 ñ Bridge UML Class diagram 147

Figure 8.8 ñ Composite UML Class diagram 149

Figure 8.9 ñ Decorator UML Class diagram 151

Figure 8.10 ñ Facade UML Class diagram 152

Figure 8.11 ñ Flyweight UML Class diagram 153

Figure 8.12 ñ Proxy UML Class diagram 155

Figure 8.13 ñ Chain of Responsibility UML Class diagram 157

Figure 8.14 ñ Command UML Class diagram 159

Figure 8.15 ñ Interpreter UML Class diagram 161

Figure 8.16 ñ Iterator UML Class diagram 163

Figure 8.17 ñ Memento UML Class diagram 166

Figure 8.18 ñ Observer UML Class diagram 168

Figure 8.19 ñ State UML Class diagram 171

Figure 8.20 ñ Strategy UML Class diagram 173

Figure 8.21 ñ Template Method UML Class diagram................................ 174

Figure 8.22 ñ Visitor UML Class diagram 176

List of Tables

Table 2.1 ñ Armstrongõs twoñconstruct OO taxonomy 14

Table 2.2 ñ òGang of Fouró concepts 15

Table 2.3 ñ Pattern taxonomy 24

Table 2.4 ñ Comparing C++, Smalltalk, and Java 6 28

EVALUATING SOFTWARE DESIGN PATTERNS a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www. rode.dk/thesis XII

Table 3.1 ñ Pattern qualities 37

Table 3.2 ñ òGang of Fouró pattern format 41

Table 3.3 ñ Pattern collections 43

Table 3.4 ñ òGang of Fouró pattern system 45

Table 4.1 ñ Pattern implementation level 55

Table 4.2 ñ òGang of Fouró patterns in Common Lisp and Dylan 58

Table 4.3 ñ òGang of Fouró patterns in Scheme + GLOS 59

Table 4.4 ñ òGang of Fouró patterns in Java + AspectJ 62

Table 6.1 ñ UML stereotypes and properties 74

Table 6.2 ñ Source code packages 77

Table 7.1 ñ Use of Java 6 features in the òGang of Fouró pattern implementations 82

Table 7.2 ñ Pattern relationships in the òGang of Fouró pattern implementations................................ .. 128

Table 7.3 ñ Implementation level of the òGang of Fouró patterns in Java 6 131

Table 8.1 ñ Abstract Factory participants 137

Table 8.2 ñ Builder participants 139

Table 8.3 ñ Factory Method participants 140

Table 8.4 ñ Prototype participants 142

Table 8.5 ñ Singleton participants 144

Table 8.6 ñ Additional Singleton entities 144

Table 8.7 ñ Adapter participants 146

Table 8.8 ñ Bridge participants 148

Table 8. 9 ñ Composite participants 149

Table 8.10 ñ Decorator participants 150

Table 8.11 ñ Facade participants 152

Table 8.12 ñ Flyweight participants 154

Table 8.13 ñ Proxy participants 155

Table 8. 14 ñ Chain of Responsibility participants 157

Table 8.15 ñ Additional Chain of Responsibility entities 158

Table 8.16 ñ Command participants 159

Table 8.17 ñ Additional Command entities 160

Table 8.18 ñ Interpreter participants 161

Table 8.19 ñ Additional Interpreter entities 162

Table 8.20 ñ Iterator participants 164

Table 8.21 ñ Mediator participants 165

Table 8.22 ñ Memento participants 166

Table 8.23 ñ Observer participants 169

EVALUATING SOFTWARE DESIGN PATTERNS a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www. rode.dk/thesis XIII

Table 8.24 ñ State participants 170

Table 8.25 ñ Strategy participants 172

Table 8.26 ñ Template Method participants 174

Table 8.27 ñ Visitor participants 176

Program Listings

Listing 7.1 ñ Abstract classes in Factory Method 84

Listing 7.2 ñ Interface usage in Flyweight 84

Listing 7.3 ñ Composition as an alternative to abstract classes in Iterator 85

Listing 7.4 ñ Static and dynamic usage of generics in Factory Method 86

List ing 7.5 ñ Dynamic usage of generics in Chain of Responsibility 88

Listing 7.6 ñ Inner classes used for adaptation in Observer 90

Listing 7.7 ñ Anonymous classes used as concrete strategies in Adapter 91

Listing 7.8 ñ Enumeration constants as states in State 93

Listing 7.9 ñ SingletonñasñSingleñConstant idiom used to implement Singleton 94

Listing 7.10 ñ try ñcatchñfinally idiom used for method combination in Proxy 96

Listing 7.11 ñ Covariant return types for prototypical and composite behaviour in Command 98

Listing 7.12 ñ Decoration and adaptation required for covariant return types in Builder 99

Listing 7.13 ñ Varargs usage in Template Method 100

Listing 7.14 ñ Class literals in Interpreter 103

Listing 7.15 ñ Stack trace and identification of class members used for sub ñclassing in Singleton 104

Listing 7.16 ñ Stack trace and class literals used to identify caller in Memento 106

Listing 7.17 ñ Reusable prototypical factories in Abstract Factory 108

Listing 7.18 ñ A reusable reflective factory in Factory Method 108

Listing 7.19 ñ Using reflective factories in Abstract Factory 109

Listing 7.20 ñ Reflective method invocation in Visitor 110

Listing 7.21 ñ Dynamic proxies in Prototype 112

Listing 7.22 ñ Annotations as compiler hints in Builder 114

Listing 7.23 ñ Annotation usage in Singleton 115

Listing 7.24 ñ Synchronisation expressing pattern functionality in Bridge 118

Listing 7.25 ñ Synchronisation in Facade 119

Listing 7.26 ñ Serialization in Memento 120

Listing 7.27 ñ Copyable and cloneable behaviour in Prototype 123

Listing 7.28 ñ Dynamic class loading in Singleton 124

EVALUATING SOFTWARE DESIGN PATTERNS ïï INTRODUCTION a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 1 of 197

1. Introduction

Life has been so much easier

since Science invented Magic.

ïï Marge Simpson

In this thesis, we evaluate software design patterns from a programming language and practical point of view in

an ObjectñOriented (OO) environment. We investigate how language paradigms in Java 6 [Gosling05] affect the

application of all the òGang of Fouró (GoF) [Gamma95] design patterns. The investigation focuses on how the

practical use, not the construction, of language features can affect the design pattern implementations . This

chapter presents the motivation for undertaking this project, as well as the goals we want to achieve. We

outline the work performed during this thesis, both theoretical and practical, and we conclude this introductory

chapter with an extensive summary of the content presented in this thesis.

1.1. Motivation
Designing and developing complex software systems is not, and has never been, an easy task. On the contrary,

the process is often very time consuming and requires interaction between many different people, skills, and

roles, internally and externally. Many, often contradictory, factors must be addressed in the design process and

at diff erent levels , such as the need for maintainability versus quick delivery, flexibility versus speed , etc . The

domain may offer tools, notations, principles, and methods to guide the development process, but they cannot

shield against bad design decisions made by humans, and they may not even be standardised. For example,

there is a lack of consensus on how to approach OO development, and several OO methods exist, each offering

their take on how to design OO systems. The Unified Modelling Language (UML) [UML05] is commonly used to

model the design, words like òclassó and òobjectó denote commonly accepted concepts, and Gamma et al.

suggest favouring object composition over inheritance [Gamma95, p.20] . However, this modus operandi is by no

means a guarantee for good and durable designs. Experience helps, but careful decisions and meticulous work

are always required. Therefore, and w orst of all, t he entire process tends to be error prone, not forgetting

costly. The larger and more complex the system is, the worse these factors seem to become at an escalating

rate .

Even the most complex systems are built by using smaller òpartsó, influencing the overall design directly or

indirectly. A part can be anything from an entire sub ñsystem to a specific component, native to the language or

otherwise, that requires the need for a specific design . Such parts may in turn be built using even smaller parts

and so forth and need to communicate to function as a whole. The key to any viable design is to identify the

relevant parts , their functionality , and their interaction , but this is no t a trivial matter . The OO approach

attempts to manage the system complexity by abstracting out knowledge and encapsulating it within interacting

objects [WirfsBrock90, p.5] . Hence, a part can be viewed as a single object (or rather its type) or a collection of

interacting objects delivering a specific functionality . If we view a part as a design problem to be solv ed,

regardless of the approach chosen, it is likely that others have already solved a similar problem in a satisfactory

manner. If we can utilise this knowledge , the quality of the system may be improved. One approach to identify

EVALUATING SOFTWARE DESIGN PATTERNS ïï INTRODUCTION a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 2 of 197

reoccurring design problems and their well ñproven solutions is to use software d esign patterns. A design pattern

is an abstraction o f practical experience and empirical knowledge , but it is also a description of the problem it

addresses and a solution to it [Alexander77; Lea93]. While the design pattern provides a canonical solution to

the described problem, human interaction and interpretation is required to apply the solution in different

contexts. Software design patterns are commonly associated with, but not limited to, O O environments.

Patterns are uniquely named and written in a consistent format that allows designers, developers, and others to

communicate using a common vocabulary. Related patterns are grouped in collections , or ideally languages.

Design patterns can facilitat e the entire design and development process because they express ideas and

solutions founded in experience traditional methodologies cannot . They communicate architectural ideas in a

consistent highñlevel language.

Nevertheless, design patterns must be applied with caution. Design patterns are neither completely static, nor

completely dynamic in nature. To apply a design pattern, a problem similar to the one addressed by the pattern

must have been identified in some context . Patterns are not reusable components, but guidelines on how to

solve a given problem. This is an important fact, but based on our experience, one that is often forgotten in real

life situations. As with any design discipline, t he human factor is important because choices and interpretations

must be made to adapt the pattern to a given situation . On the other hand, the environment or context may

dictate behaviour that must be adhered to , and thus cannot be changed. The solution must be implemented for

each context, perhaps differently and perhaps using different programming languages, but a given environment

may also present standard implementations of a given pattern for easy reuse , depending on the pattern

complexity . Patterns can be misunderstood, misused, not used at all, or convey incorrect information at the

time of writing and/ or at the time of application. While design patterns can lead to sound designs, they cannot

offer any guarantees [Vlissides97, i. 5] . The true benefit is only realised if a given collection of design patterns is

used on a regular basis in a specific domain and context . The continued use will motivate a better understanding

of how the patterns work and possibly evolve in the given context . In a practical sense, d esign patterns that

repeatedly have been applied successfully are in our view equivalent to òteachingó or òBest Practicesó for the

domain in question , according to the philosophical approach offered by òBest Practicesó based around

continuous learning and continua l improvement (see also [Vlissides97, i.6]). Qua this reasoning, we have used a

number of design patterns extensively in our OO designs, but have experienced that regular practical usage in a

given context is closely tied to the pro gramming language used to implement a given pattern .

The motivation for this project is to gain a better understanding on how to use design patterns from a practical

point of view in OO environments, specifically how the use of language features can infl uence the pattern

application. To make this concrete, we investigate the òGang of Fouró design patterns using Java 6 as the

programming language. In our view, òdesign patternsó as a concept is indeed a helpful tool . However, t he choice

is not whether or not to use òdesign patternsó in the design process, but which concrete patterns to use , if any .

Design patterns as a practical tool are meaningless unless specific design patterns are known, because otherwise

the knowledge cannot be utilised. A pattern can d escribe anything, but only specific patterns can solve a given

problem. By virtue of our job, w e wish to evaluate the òGang of Fouró patterns because we have used several of

them extensively, but critically, in the design and development of large and quite complex Internet

EVALUATING SOFTWARE DESIGN PATTERNS ïï INTRODUCTION a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 3 of 197

applications . The òGang of Fouró patterns are a collection of twenty ñthree design patterns described in the

òDesign Patternsó book [Gamma95]; by April 2005, the book was in its 32 nd printing ! The òGang of Fouró pattern s

describe communicating objects and classes that are customised to solve a general design problem in a

particular context [Gamma95, p. 3] in OO environments. The experience gained while working with the se

patterns over the years has shown us that they can be a valuable aid in shaping the design of successful

applications, but we have also noted several issues that warrant a closer look. The òGang of Fouró patterns are

well over a decade old, and seem to be targeted primarily for C++ [Stroustrup91] environments with rather

dense and stringent descriptions on how to implement them . We have used them in different environments,

using languages supporting other, or missing, features compared to those addressed in the pattern descriptions .

We have also experienced problematic issues, such as concurrency related issues; for example, how threadñsafe

initialisation in the Singleton [Gamma95, p.127] pattern is ensured. Many of these issues are practical in nature,

and seem related to how design patterns and a given programming language interact. Continuing with the

Singleton example, Java has builtñin support for synchronisation, which could solve the initialisation problem,

but there are also other ways to solve the problem in Java. Unfortunately, because of time and money, realñlife

projects seldom allow inñdepth investigations on such issues. The aim of this project is to remedy this by

offering a subjective, but comprehensive, evaluation of the òGang of Fouró patterns implemented in Java 6. The

result of the evaluation will give us a better understanding on how the practical use of certain language features

may affect the evaluated design patterns. This is relevant as the òGang of Fouró patterns are frequently used in

realñlife systems, and so is Java, but Java 6 furthermore offers a range of versatile features that will be

interesting to apply in the pattern implementations. As the evaluation centres on features found in Java 6, most

observations will be relevant for Java o nly. I t may be possible that some can be generalised to similar languages.

1.2. Goals
The primary objective of this Masterõs Thesis is for the undersigned to obtain a Masterõs Degree in Computer

Science from the University of Copenhagen, Denmark.

This thesis represents a project with a formal workload of 30 ECTS. The purpose of the project is to evaluate

practical application of the òGang of Fouró design patterns using Java 6 and present the findings in this thesis.

The premise is to investigate how the use of Java 6 features may affect pattern application . By doing so, we

hope to gain valuable experience that will enable us to understand and use design patterns better in òrealñlife

situationsó, not just when applied in Java , but also in situations where the choice of programming language has

already been made. The work include s theoretical and practical aspects.

The primary objective is achieved , if the project is approved based on this thesis. To fulfil the purpose of the

project, we define the following sub ñgoals to be addressed in the project and in this thesis:

I. Theory and Background ïï Present an introduction to and a discussion about the theory deemed

necessary to understand topics covered by the evaluation. This will include OO ; patterns in general wit h

focus on software design patterns , especially the òGang of Fouró design patterns; clarification on how

EVALUATING SOFTWARE DESIGN PATTERNS ïï INTRODUCTION a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 4 of 197

concepts and themes described by Gamma et al. relate to Java 6 ; and a discussion on related work and

topics.

II. Evaluation Approach ïï Define a simple, b ut reasonably structured approach on how to perform an

evaluation of the òGang of Fouró patterns, where the choice of language will act as a catalyst for the

evaluation . The approach must describe the overall evaluation set ñup; how to focus the evaluation ;

and how to describe the specific criteria used to perform the various investigations . As the evaluation is

subjective, t his will enable others to judge the premise, execution, and result of the evaluation as well

as perform a similar evaluation using a di fferent language catalyst.

III. Implementation ïï Within the realm of the defined approach, implement and evaluate the òGang of

Fouró design patterns using Java 6.

IV. Evaluation ïï Present the evaluation outco me and comment on the findings separately for each

evaluated pattern and by juxtaposing the individual evaluations.

A secondary objective is the intention that this thesis can aid others , especially colleagues at work and likeñ

minded, to reflect about software design patterns in general, but in particular in relation to the òGang of Fouró

patterns implemented in Java 6. Whether or not this objective is achieved will not be evaluated, but this thesis

and the implementations will be made publicly available for those interested.

1.2.1. Demarcations

This thesis will not cover:

 An evaluation on the validity of the abstractions the òGang of Fouró patterns describe. It is assumed

that the patterns represent usable solutions to the problems the y address, and the evaluation

investigates only issues related to practical patte rn application in Java 6 . The pattern abstraction s will

only be commented during the investigations if deemed necessary.

 An inñdepth description of Java 6 and its features, as the reader is assumed familiar with Java.

 The theory behind the c onstruction of programming languages, specifically Java. While it is necessary

to be familiar with language features in order to utilise them in pattern application, it is not necessary

to know how these features are implemented in the language itself. For example, we do not care how

Javaõs garbage collector or type system is implemented internally , only about the features they offer to

the user and implementer of the design patterns . Relevant features are only described and discussed

from a practical point of view.

 An inñdepth analysis of Christopher Alexanderõs work on patterns and pattern languages within the

field of architecture . In computer science, t he òGang of Fouró patterns build on these concepts, as do

others, but we only present a quick introduction , primarily based on [Appleton00; Lea93].

EVALUATING SOFTWARE DESIGN PATTERNS ïï INTRODUCTION a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 5 of 197

1.3. Thesis Summary
In this thesis, we present a subjective evaluat ion of the òGang of Fouró design patterns implemented in Java 6 .

The evaluation centres on how the use of specific language features may affect the pattern application. To

make a reasonably structured evaluation across the different patterns using a given language as the catalyst , we

address issues related to the implementation described by Gamma et al. in the Implementation and Sample

Code elements in the òGang of Fouró pattern descriptions. If possible, we provide an example on how equivalent

functionality can be implemented in Java 6, or explain why it cannot. We summarise our findings, and identif y

traits common to several patterns . Additionally, we present a thorough introduction to the background theory

required to understand the òGang of Fouró patterns and the concepts they build on , such as OO development

and pattern theory. We also discuss several articles related to application of the òGang of Fouró patterns in

various different languages, both dynamic and static languages, and where deemed relevant compare the results

to the outcome of this evaluation.

This thesis is divided into two parts , excluding the introducti on and overall conclusion. The first part presents

theory and background (chapters 2 ð 4). The second part concerns the implementation and practical evaluation

(chapters 5 ð 9). In principle, each part can be read independently, but part one provides a solid foundation on

related topics before the evaluation is undertaken in part two . Most of the theory presented in this thesis can be

found in numerous other places in the literature as well , but we apply a practical viewpoint that focuses on the

òGang of Fouró patterns and Java 6. By including, discussing, and focusing on various aspects of it here, we

maintain an important perspective on points relevant to the evaluation .

1.3.1. Part One τ Theory and Background

This part begins with an introduction to O O development . Focus is on how design patterns, particularly the

òGang of Fouró patterns and the concepts they express, can aid the process and how they relate to Java 6 .

Pattern theory and the relation to software patterns are described and selected studies on related work are

examined.

Chapter 2 ïï The òGang of Fouró patterns are design patterns targeting design problems related to OO. To

understand the inner workings of the òGang of Fouró patterns, the OO methodology forming their foundation

must be understood. Its importance is emphasized by Gamma et al. as the entire first chapter in [Gamma95] is

dedicated to the OO concepts and themes that form the basis of the design patterns presented. Hence, chapter

2 gives an introductory, but focused, presentation to the se issues, but goes even further and connects concepts,

themes, Java 6, and usage of design patterns in the overall development life ñcycle of OO systems. As explained

in section 2.1 , there is no formal consensus on the concep ts that describe fundamental OO behaviour, but the

themes and concepts described by Gamma et al. seem to be commonly accepted. This is illustrated by

juxtaposing the concepts against a recent survey by Armstrong [Armstrong06] that i nvestigates 239 texts on OO

theory to try to identify the fundamental concepts inherent to OO. Because of this wide acceptance and

considering how ubiquitous applicable the abstractions described in òGang of Fouró patterns have proven to be,

EVALUATING SOFTWARE DESIGN PATTERNS ïï INTRODUCTION a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 6 of 197

the choice of OO method to guide the development process becomes less important . In many respects, as

reasoned in section 2.2 , we see design patterns as orthogonal to OO methods, because the objects and

knowledge they represent are independent of which method produced the (initial) context to which a pattern

can be applied. Regardless of the OO method used, the software lifecycle normally includes phases such as OO

analysis (OOA), OO design (OOD), and OO programming (OOP), or implementation , perhaps reñiterated as

needed as the design evolves. Section 2.4 explains that t he analysis phase determines what is to be built, often

in form of a conceptual model, and the design phase how it should be built , as pointed out in section 2.5 . Design

patterns are primarily used during the design phase, often modelled using UML as described in section 2.3 , but

also in the implementation phase as the pattern s must be adapted to and implemented in the chosen language.

As rationalised in section 2.6 , the design and implementation phases are where the choice of language r eally

becomes important, because it determine s how the design is executed; what is possible, what is not, and

ultimately how well the implementation reflect s the desired concepts and themes.

Chapter 3 ïï Chapter 3 presents general pattern theory based on the ideas set forth by Christopher Alexander

within the field of architecture, but also relate s the theory to software design patterns, and in particular to the

òGang of Fouró patterns. The òGang of Fouró design patterns are òjustó one collection of software design

patterns, and in order to understand software design patterns as a concept, at least the basic principles of

Christopher Alexanderõs work on patterns and pattern languages must be known. This is necessary because

software design patterns in general build on t he basic ideas set forth by Alexander , in particular the òGang of

Fouró patterns evaluated here [Gamma95, p.2]. Simplified greatly , a pattern is an abstraction of practical

experience and basic knowledge on how to solve a given problem , described in a consistent format so it can be

adapted for reuse in similar contexts. Section 3.1 contains an introduction to Alexanderõs work, describing the

history and theory behind patterns and pattern languages; the information is mainly based on [Appleton00] and

[Lea93], subsidiary on [Alexander77]. Many of Alexanderõs ideas are admittedly abstract, but computer science

was not only reasonably quick to adapt several of his ideas , but also to introduce original pattern related

concepts as explained in section 3.2 . According to Alexander, a pat tern must ideally possess certain properties

to ensure the quality of the pattern and thus the quali ty of the (reusable) solution it generates, for example

Abstraction , Composibility, and Encapsulation. Many of these properties have similar meaning to desi rable

constructs in OO, which could explain why software patterns first became popular within this domain. A class,

for example , is an abstraction with encapsulated responsibilities that can be used as a component by other

classes. Pattern qualities are ex plained in section 3.3 , but a pattern must furthermore balance opposing forces,

or constraints, within its context to reach a balance that implicitly will be present in the pattern and its

application [Appleton00]. This implies, as elaborated in section 3.4 , that a pattern may represent trade ñoffs

between various forces , for example flexibility versus speed of an OO application. For a pattern to be useful, it

must concisely communicate both the problem it tries to solve and the solution to it , including expressing the

desired qualities and account for the forces at play . It does this b y partitioning the description in various

descriptive elements, such as Name, Intent, Consequences, Implementation, Sample Code, etc., but t his is no

trivial matter as the notion of patterns can be applied in various contexts . Section 3.5 describes common

pattern formats used to describe patterns ; in particularly the format used to describe the òGang of Fouró design

patterns, where C++ and Smalltalk are use d to illustrate key pattern points. This format is used extensively in

EVALUATING SOFTWARE DESIGN PATTERNS ïï INTRODUCTION a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 7 of 197

the evaluation, in particular the Implementation and Sample Code elements as they pertain to the

implementation and evaluation . Still, the lack of a formalised concept of a design pattern has long been a

vigorously debated issue within the pattern community . It goes to the very core of understanding, or agreeing

on, what software design patterns are. This is discussed in section 3.6 . Formalism is closely related to tool

support for pattern mining, understanding, and application , and can therefore aid the implem entation , but also

limit the degree of freedom inherent in pattern descriptions . Section 3.7 describes how patterns can be grouped

in col lections, or ideally languages , where individual patterns may be interrela ted in various cooperative ways.

All twenty ñthree òGang of Fouró patterns are finally presented, including an illustration of how they may

intricately connect and cooperate in numerous ways. The Gamma at el. classification scheme is also presented,

which classifies patterns according to scope (Class, Object) and purpose (Creational, Structural, Behavioural).

Section 3.8 describes how patterns can evolve, f rom discovery to ordinary usage to possibly becoming part of

the language itself . Pattern collections may also evolve over time. Finally, section 3.9 discusses the practical

application of patterns .

Chapter 4 ïï The final chapter in the first part of this thesis is ch apter 4, which discuss selected studies on

related work. All revolve around the òGang of Fouró pattern application in a given language. Compared to

chapter 2 and 3, the chapter is much more technical and practical . It is discussed how specific languages via

their paradigms and features affect individual òGang of Fouró patterns. As explained in section 4.1 , d ifferent

languages have different support for various pattern abstractions . According to Norvig [Norvig96, p.7] , patterns

can be classified based on their (language) implementation level as Invisible, Inform al, or Formal , where only

the latter corresponds to pattern application as described by Alexander, i.e. anew from òscratchó for each

context. The former two rely on built ñin language support and/or components, respectively. The level of

support can greatly influence the pattern application in the given language, and Java is no different . Several

dynamic and primarily functional languages have been shown to provide simpler pattern implementations

compared to the canonical òGang of Fouró implementations. Arti cles describing t hree such language studies are

examined in section 4.2 , concerning Common Lisp, Dylan, and Scheme. The primary conclusion drawn from

these studies is that dynamic features such as reflection, fi rstñclass types, multiple ñdispatch, and higherñorder

functions have a positive impact on nearly all of the òGang of Fouró patterns [Norvig96, p.10; Sullivan02a, p.43].

This is interesting because even though Java is neither functional, nor dynamic , it supports reflection, closures,

generics, and dynamic proxies, which possibly could be used to achieve similar implementations. As section 4.3

reveals, the òGang of Fouró patterns have been applied in several earlier Java versions, at least, but we have

not found similar studies of all òGang of Fouró patterns in Java 5 or 6. Studies of AspectJ and Eiffel

implementations are also discussed in section 4.3 . AspectJ uses Aspect Oriented Programming (AOP) features to

allow Java to exhibit very dynamic features, such as open classes and support for method combination (advice).

Utilising such features, t he study claims that seventeen of the twenty ñthree implementations exhibit modularity

improvements in terms of better code locality, reusability, com posibility, and (un)pluggab ility [Hannemann02,

p.1]. This is interesting, because Java by itself can simulate many of the features found in AspectJ, though

requiring some work. The Eiffel studies are similar in that many of the features can also be found or simulated in

Java 6, but also because of the success rate in fully or partly componentizing twoñthirds of the òGang of Fouró

patterns [Meyer06, p.3] . Interesting. Section 4.4 provides a comparison of the features examined in the

EVALUATING SOFTWARE DESIGN PATTERNS ïï INTRODUCTION a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 8 of 197

aforementioned studies, comparing them to features found in Java 6 that can b e used in the practical

evaluation . It also tries to identify common traits of individual patterns as well as per pattern classification, e.g.

scope (Class, Object) and purpose (Creational, Structural, Behavioural) .

1.3.2. Part Two τ Evaluation

The second part concerns the practical evaluation , which consists of individual pattern implementations as well

as a comparative evaluation of all implementations and features used, to identify common traits and issues.

Chapter 5 ïï Chapter 5 defines a simple evaluation approach that can be used to investigate how well a given

language expresses all pattern functionality described in the òGang of Fouró Implementation and Sample Code

elements, and then applies it to define the e valuation goals used in this thesis . For others to judge the

evaluation, its premise must be known. As described in section 5.1 , the focus is practical and experimental as

these elements focus implementation and language issues. Next, the evaluation approach is defined in section

5.2 . It requires a detailed and a comparative evaluation. The detailed evaluation concerns the actual pattern

implementation and participant usage, and describes the pattern implementations using familiar òGang of Fouró

pattern elements, albeit in more detail. T he comparative evaluation juxtaposes the individual observations and

feature usage to identify common traits and issues. Section 5.3 uses the defined approach to establish the

evaluation goals. The overall goal is to provide a realistic, but subjective , evaluation that may help understand

how the òGang of Fouró patterns and Java 6 can cooperate. The focus is practical and technical, from the

perspective of a practising designer and/or developer. Three broad categories of Java 6 features are examined:

core language features (types, generics, closures, etc .), reflection (class literals, dynamic pr oxies, annotations,

etc.), and special language mechanisms (synchronisation, serialization, cloning, etc .). The comparative

evaluation will also analyse òGang of Fouró pattern relationships described by Gamma et al. compared to those

actually expressed in the implementations. It also classifies the level of support individual patterns have in Java

6 within the realm of the evaluation performed .

Chapter 6 ïï Chapter 6 is dedicated to the practical aspects relate d to the implementation in Java 6 . Section

6.1 outlines the technical set ñup, such as the exact Java version and IDE used. Eclipse 3.3 is the primary IDE,

but Sunõs NetBeans 5.5.1 is used for comparison. Eclipse uses its own compiler implementation , whereas

NetBeans uses the official compiler . No plugñins of any kind are required to run the evaluation code or tests. All

individual pattern implementations operate, directly or indirectly, on a set of model classes to imitate a larger

òapplicationó compared to what could be achieved by isolated pattern implementations alone. Individual

implementations or parts thereof can thus more easily be used in other pattern implementations, expressing

many of the pattern relati onships described by Gamma et al. Section 6.2 explains how the implementations are

modelled using UML Class diagrams. The diagrams are a big part of the detailed evaluation because they

meticulously illustrate pattern participants , including attributes and operations . In section 6.3 , t he basic design

for the overall evaluation is described , also illustrated in UML. Next, section 6.4 presents an overview of the

developed source code, divided into relevant packages for each pattern implementation . Several Meta packages

containing functionality such as model classes, loggers, reflection and general utilities have also been

developed. To ensure that others can confirm the pattern behaviour in the implementations provided in this

EVALUATING SOFTWARE DESIGN PATTERNS ïï INTRODUCTION a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 9 of 197

thesis, an absolute minimal òtest frameworkó has been developed as explained in section 6.5 . Each pattern

implementation supplies a test class to illustrate the functionality . This is not a replacement for JUnit testing,

but merely to report developed class usage via system out or file loggers. Complete source code, JavaDoc, and

UML Class diagrams are available o n the thesis website at http://www.rode.dk/thesis .

Chapter 7 ïï The first part of the evaluation is the comparative evaluation in chapter 7. The comparative

evaluatio n offers a thorough analysis of which Java 6 features are used to implement which patterns . Section

7.1 presents all identified pattern í feature mappings in table 7.1, highñlighting the most interesting entries ,

which are also summarised separately in section 9.2 . The features investigated are those established in chapter

5, categorised as core language features , reflection , or special language mechanisms. Each feature has a

dedicated subñsection that explains its usage across all patterns, identifying possible common traits and

alternatives, as well as a small conclusion to its usefulness with regards to help expressing òGang of Fouró

pattern functionality. Numerous program listings are used to illustrate pattern functionality. The evaluation

shows that the pattern implementations benefit from Javaõs mixture of static and dynamic features. As the last

thing, section 7.1 presents observations from the pattern implementations on how to translate C++ features into

Java 6 features relevant to several patterns. Next, section 7.2 compares the pattern relationships expressed in

the evaluation to the òGang of Fouró described relationships identified in section 3.7 . The expressed

relationships are subje ctive based on the evaluation design rather than language features , but help illustrate

how versatile the òGang of Fouró patters are. To conclude the comparative evaluation, section 7.3 classifies the

patterns according to the ir implementation level as described by Norvig, explained in section 4.1 .

Chapter 8 ïï Chapter 8 presents the individual pattern implementations. Section 8.1 , 8.2 , and 8.3 present the

evaluations of Creational, Structural, and Behavioural patterns, respectively. Each pat tern investigation is

presented as required by the evaluation approach defined in chapter 5. The detailed evaluation shows that

practically all pattern functionality described in the Implementation and Sample Code elements of the òGang of

Fouró design patterns can be implemented or simulated in Java 6, including Meta information not used directly

in the canonical implementations. The implementations express the concepts described in chapter 2 and 3.

Chapter 9 ïï The results of the comparative and detailed evaluations are summarised and presented in chapter

9. While chapter 7 and 8 provide summaries and conclusions where appropriate, chapter 9 comments on the

evaluation as a whole, present s highñlights, and puts the evaluation and its results in perspective. Section 9.1

determines the level of compliance between the implementations and the òGang of Fouró concepts, themes,

and pattern descriptions. Section 9.2 concludes that Javaõs core language features promote robustness, pattern

intent, and reusability, and form the base of all the pattern implementations. Combined with reflection and

annotations, this offers al ternative and flexible pattern implementations. Next, section 9.3 presents the highñ

lights identified during the evaluation that utilises the Java 6 features in the manner just described. Highñlights

include generic factories in Abstract Factory and Factory Method , guarded types in Memento, annotated

observers in Observer, dynamic proxies in Proxy and State, and enumerations in Singleton (Singletonñasñ

SingleñConstant idiom). We end the evaluation conclusions with an evaluation of the defined evaluation

approach itself in section 9.4 . We conclude that the evaluation approach offers a way to investigate and judge

http://www.rode.dk/thesis

EVALUATING SOFTWARE DESIGN PATTERNS ïï INTRODUCTION a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 10 of 197

how well a given language can express the òGang of Fouró functionality expressed in the Implementation and

Sample Code elements, but we do not draw any conclusions as to whether the language catalyst should be used

in a given scenario, here Java 6. The evaluation serves as a tool from which experience can be drawn .

Following part two, c hapter 10 contains an overall conclusion to this thesis and the work performed . Section

10.1 explains the perspective in which this thesis and its conclusions must be understood: from a practical and

experimental point of view , explanatory in nature. T he initial goals have all been achieved and the specific

results and contributions made by this thesis are listed in section 10.2 . Primary contributions include the

detailed evaluation in chapter 8, which shows that practically all pattern functionality described in the

Implementation and Sample Code elements of the òGang of Fouró patterns can be implemented or simulated in

Java 6, as well as the pattern and Java 6 functionality highñlights from section 9.2 . Before we conclude this

thesis with a final remark in sectio n 10.4 , an outlook on possible future work is provided in section 10.3 .

1.3.3. Work Performed

The work performed during the project and presented in this thesis has been bot h theoretical and practic al,

with emphasis on the latter . The amount of hours put into the project has been substantial; the time spent

reading, writing, experimenting, shouting, and programming is hard to put into words, but has been spent

nonetheless.

1.3.3.1. Theoretical

The theoretical aspect covers the research, books and articles read, not forgetting the summation and discussion

of the relevant material presented in this thesis. Making clear demarcations proved no easy task because, in our

view, everybody wit hin the field of computer science seem to have an opinion on software design patterns,

perhaps because of the apparent lack of a common understanding and formal methodology. Much new material

had to be covered, understood, and some of it paraphrased for th is thesis; and some material that was expected

could not be found. All this initially came as a bit of surprise; while design patterns are easy to use, ordinary use

normally does not warrant in ñdepth scrutiny, research, and evaluation based on scientific t heories. As this

thesis concludes, the use of design patterns is very much a practical discipline. Due to the shift in focus of this

thesis, much early research and work unfortunately had to be discarded, but this process also caused much

improved (practic al) focus and structure in the thesis. [Rode07a] is the final work description.

The bibliography contains the list of references used in this thesis . Pivotal among them are [Gamma95], [Lea93;

Lea00], [Appleton00], [PPR], [Buschmann96], and [WirfsBrock90] for the theory and background; [Norvig96],

[Sullivan02a; Sullivan02b], [Hannemann02], and [Arnout06; Meyer06] for the related work; and [Stroustrup91],

[Gosling05], and [Bloch01] for the implementation and evaluation . The choice to use the òGang of Fouró

patterns was made because of experience and their widespread use . The (reñ) reading of the [Gamma95] book

gave us much new insight into the workings of several familiar òGang of Fouró design patterns. The book is very

dense and covers a lot of information, some of which can easily be missed on casual reading. This is one of the

reasons why the evaluation investigates all functional ity described in the Implementation and Sample Code

elements, and not just the canonical implementations.

EVALUATING SOFTWARE DESIGN PATTERNS ïï INTRODUCTION a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 11 of 197

1.3.3.2. Practical

The practical part covers everything related to the evaluation and implementation (s). It took substantial effort

to figure out how to condu ct a meaningful evaluation of design patterns. An evaluation only makes sense if the

premise for the evaluation can be viewed and judged by others, so they themselves can conduct a similar

evaluation, or at least judge the outcome in the proper context. Because of the shift in focus, we deemphasised

a formalised evaluation approach compared to the practical work performed in the evaluation . Unfortunately,

this was not done until after we had developed a semi ñformal approach, which was then completely discar ded.

On the plus side is that this gave the entire project an aura of realism because unlike the òGang of Fouró

patterns, software projects and systems rarely get things right on the first try.

The choice to use Java 6 was because of personal experience with Java, but also because we know of no other

study analysing the use of Java 6, or 5 for that matter, as the language to implement the òGang of Fouró

patterns. Experience is essential in a project like this; the òtricks of the tradeó cannot be utilised otherwise and

implementations may become trivial. The overall implementation has produced over 300 Java source files,

yielding 400+ compiled class files (including enumerations and inner classes). The design, implementation, test,

and documentation took lon ger than expected, as always. We feel it is important to establish that the pattern

implementations are not trivial shells unless explicitly warranted by the design, but realistic and sometimes

quite complex. Because of the scale of the implementation s, th e evaluations also took quite some time . In

reality, the theoretical and practical work performed exceeds 30 ECTS, though in part because of the shift in

focus. This indicates that the thesis scope is perhap s too wide and/ or too ambitious, but done is done .

EVALUATING SOFTWARE DESIGN PATTERNS ïï THEORY AND BACKGROUND a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 12 of 197

2. ObjectτOriented Development

The objectðoriented model makes it easy

 to build up programs by accretion.

What this often means, in practice, is that

it provides a structured way to write spaghetti code.

ïï Paul Graham

In a room full of top software designers,

if any two of them agree, that is a majority.

ïï Bill Curtis

ObjectñOriented (OO) development is entirely possible without the use of OO design patterns, but if OO design

patterns are used, they must be applied within the realm of OO development. This chapter gives a short

presentation to OO development and to the process of designing OO systems with focus on how OO and design

patterns interact , especially in a Java context . The òGang of Fouró design patterns we evaluate in this thesis can

be used as a tool to aid the design of OO systems, regardless of the Object ñOriented Method (OOM) used. The

patterns represent solutions to problems related to the design of OO systems, but at the same time express this

knowledge using OO concepts and principles. Hence, the general OO concepts must be understood in order to

understand the design patterns and to perform the evaluation in a consistent manner , including understanding

the approach utilised by Gamma et al. in the òGang of Fouró design patterns t hemselves. We also link the

themes and concepts described by Gamma et al. to Java. To understand how and when design patterns can be

utilised when designing OO systems, we present abridgements on ObjectñOriented Analysis (OOA), Objectñ

Oriented Design, and ObjectñOriented Programming (OOP) as well.

The Object ñOriented (OO) approach to software design attempts to manage the complexity inherent in real ñ

world problems by abstracting out knowledge and encapsulating it within objects [WirfsBrock90, p.5] .

Identifying the proper objects, relationships, and interactions are the key objectives to any successful OO

design, but this is no trivial matter. The granularity of the design is thus a (complex) object, but an object may

also represent an interaction with a complete subñstructure, for example a reusable component or a software

design pattern such as a òGang of Fouró pattern. Numerous OO methods have been developed, each offering

more or less proprietary procedures on how to approach th e design and development in order to fulfil these

objectives, but no common standard exist s. Up until deployment , and regardless of the method used , t he OO

development life ñcycle generally consists of analysis, design, implementation , and testing phases in some form.

The phases may be overlapping or reñiterated, each time refining the design and implementation . This is

dictated by the OO method and procedures used or more likely by (ever) changing demands and specifications.

Compared to other forms of software development the design phase is considerable larger, because OO systems

are designed for easy reuse, maintenance, and modification [WirfsBrock90, p.9].

As the design phase is so central to OO development, it is paramount that the design is sound and durable. While

the OO method may guide the design process, it cannot offer the specific knowledge represented by a pattern.

Patterns known by the designer can be used as a tool in the design process because they offer proven soluti ons

to common problems, which ideally heighten the quality of the design. Part of the pattern knowledge is

EVALUATING SOFTWARE DESIGN PATTERNS ïï THEORY AND BACKGROUND a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 13 of 197

describing the objects and their relationships relevant for the given scenario, thereby making the job of the

designer a little easier. As a benefit, the application of well ñknown patterns will probably make the design

seem more familiar to other designers as well. Figure 2.1 illustrates the OO software development life ñcycle

commonly used excluding phases such as deployment and evaluation and the relation to patterns .

Figure 2.1 ñ OO development life ñcycle and patterns (modified from [WirfsBrock90, f .1ñ2])

Design

Implementation

Testing
Analysis

Design patterns

Idioms

Analysis patterns

Architectural

patterns

The OO software development life ñcycle traditionally
consists of an analysis, design, implementation, and
testing phase, which may be overlapping or re ñiterated
as dictated by the OO method used, each time refining
the design and implementation.

Different categories of patterns are used in different
phases of the life ñcycle. Architectural patterns have
large design granularity and are used early in the design
phase. Analysis patterns target the domain . Design
patterns have medium granularity and can be used
throughout the entire design phase , but are also closely
related to the implementation . Idioms have the smallest
granularity and are connected with a specific language.

Different categories of patterns are used at different times i n the development process, but their usage can

overlap as illustrated in figure 2.1 above. As explained in section 2.5.1 , design patterns are patterns targetin g

design problems with medium granularity , used to refin e the subñsystems or components of an OO system, or

the relationships between them [Buschmann96, p.13] . The òGang of Fouró patterns are classified as design

patterns, which is thus the category of pattern s this thesis investigates. From a practical point of view, d esign

patterns are also closely related to the implementation because their description s contain source code and must

in any case be implemented. Any type of pattern used in OO development inherently reflects OO concepts such

as objects, classes, inheritance, encapsulation, polymorphism, etc. To understand such patterns these concepts

need to be understood as well. Hence, t he next section presents an int roduction to OO concepts as understood

in this thesis before we describe the processes pertaining to OO development and the relat ion to patterns .

2.1. ObjectτOriented Concepts
The general lack of consensus regarding fundamental OO concepts is clearly illustrat ed by a recent survey of

existing literature related to OO development performed by Armstrong [Armstrong06]. Two hundred and thirty

nine articles, books, and conference proceedings related to OO development were examined by Armstron g to try

to identify the essential elements of OO development. Thirty ñnine concepts were identified, but only eight of

these were utilised by the majority of the sources reviewed [Armstrong06, p.124]. Armstrong argues that the

lack of consensus may be because we do not yet thoroughly understand the fundamental concepts that define

the OO approach. Many authors suggest concepts that define OO, taking for granted that the concepts are

known, or that no universal concepts exist; others acknowledge the need for a consensus [Armstrong06, p.123].

Few works offer methods of precise specification for OO design, and none are commonly recognised as

standards.

Armstrong defines a twoñconstruct taxonomy containing the ei ght fundamental concepts identified, also known

EVALUATING SOFTWARE DESIGN PATTERNS ïï THEORY AND BACKGROUND a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 14 of 197

as quarks [Armstrong06, t.3]. The taxonomy is reproduced in table 2.1 below.

Table 2.1 ñ Armstrongõs twoñconstruct OO taxonomy (modified from [Armstrong06, t.3])

Construct

Description

Structural Construct

Abstraction Creating classes to simplify aspects of reality using disti nctions inherent to the problem.

Class A description of the organisation and actions shared by one or more similar objects.

Encapsulation Designing classes and objects to restrict access to the data and behaviour by defining a
limited set of messages tha t an object can receive.

Inheritance The data and behaviour of one class is included in or used as the basis for another class.

Object An individual, identifiable item, either real or abstract, which contains data about itself
and the descriptions of its manipulations of the data.

Behavioural Construct

Message A way to access, set, or manipulate information about an object.

Message Passing An object sends data to another object or asks another object to invoke a method.

Polymorphism Different classes may respond to the same message and each implement it appropriately.

By using an OO perspective to classify the individual concepts, they are placed in one of two constructs, namely

the Structural or Behavioural construct. Armstrong describes Structural concepts as focused on the relationship

between classes and objects, as well as the mechanisms that support the class/object structure. A class is an

abstraction of an object. The class/object encapsulates data and behaviour and inheritance allows the

encapsulated data and behaviour of one class to be based on an existing class [Armstrong06, p.127]. On the

other hand, Behavioural concepts are focused on object actions. Armstrong describes message passing as the

process in which an object sends information to another object, or asks the other object to invoke a method.

Last, polymorphism enacts behaviour by allowing different objects to respond to the same message differently

[Armstrong06, p.127]. Behaviour and structure are interconnected in the sense that behaviour is a way of

manipulating structure, but behaviour must also support the actions of the system. The OO perspective used in

the taxonomy to identify concepts as either Structural or Behavioural matches very well with the òGang of Fouró

classification concerning pattern purpose , namely Structural, Behavioural, or Creational as described in section

3.7.1 on page 44. It also matches quite well with the types of UML diagrams targeting Structural and

Behavioural conduct as described in section 2.3 .

In order to perform a meaningful evaluation of the òGang of Fouró design patterns, the general concepts and

themes inherently expressed by the design patterns must be understood. The pattern authors understanding of

OO concepts will naturally be reflected in the pattern descriptions, but pattern users may have a d ifferent

understanding as Armstrongõs survey explains. We must therefore establish the basic concepts and themes

reflected in the òGang of Fouró patterns. Luckily, this is not as difficult as it sounds. Several concepts related to

OO development in classñbased languages are summarised in chapter one of the òDesign Patternsó book

[Gamma95, p.11 -28]. Obviously, this thesis adapts the concepts and themes described by Gamma et al. ,

especially because Java is a classñbased language like C++ and Smalltalk. Not doing so would be a topic for a

EVALUATING SOFTWARE DESIGN PATTERNS ïï THEORY AND BACKGROUND a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 15 of 197

different thesis altogether, for example an evaluation targeting prot otypedñbased languages, where OO

concepts such as classes and inheritance has no or at least a different meaning.

2.1.1. Concepts

The OO concepts described in chapter one of the òDesign Patternsó book [Gamma95, p.11 -28] are explained in

relat ion to the languages used, i.e. C++ and Smalltalk, as well as the problems the òGang of Fouró patterns are

designed to solve. For example, the concept of mixin classes seems only relevant in a language like C++ that

allows multiple functional inheritance (as opposed to mixin types, in Java in form of interface implementation

that requires composition). The delegation and acquaintance concepts directly refers to one of the general

òGang of Fouró design principles as described in the next section. The number of concepts is around forty in

total of varying granularity , though many of them have fine granularity . Thirtyñeight is the number of boldñ

faced words, i.e. concepts, with associated explanations on pages 11 -28 in [Gamma95]. Some have identical

meanings, though, for instance request and message. In addition, a few concepts are introduced as part of a

figure or section heading, for example application . Table 2.2 lists the identified concepts in alphabetical order.

Because the concepts are described in relation to C++, the table also supplies comments related to Java .

Table 2.2 ñ òGang of Fouró concepts

Concept

Description

Java 6 Remarks

Abstract class A class whose main purpose is to define a common
interface for its sub ñclasses [Gamma95, p.15] .

Supported.

Abstract
operation

The methods an abstract class declares but does
not implement [Gamma95, p.15].

Supported. Abstract methods can only be
declared in abstract classes. Interfaces also
declare methods with no corresponding
implementation.

Acquaintance An object uses another object in a loosely coupled
fashion [Gamma95, p.22].

Composition, supported .

Aggregatee The object owned by the aggregator [Gamma95,
p.23].

Composition, supported. Also called
Aggregate Member.

Aggregation An object owns or is responsible for another object
[Gamma95, p.22].

Composition, supported .

Aggregator The object owning the aggregatee [Gamma95,
p.23].

Composition, supported .

Application Type of program where internal reuse is important
[Gamma95, p.25].

Blackñbox
reuse

Reuse by object composition [Gamma95, p.19].

Class An objectõs implementation is defined by its class
[Gamma95, p.14].

Supported since Java is a classñbased
language. Java also provides access to an
objectõs class at runtime.

Class
inheritance

Defining new classes in terms of existing classes for
code and representation sharing [Gamma95,
p.15,17].

Java supports single inheritance only, but a
class can implement several interfaces .

Client The object that issues a request [Gamma95, p.11].

Concrete class A class that is not abstract [Gamma95, p.15]. Supported.

EVALUATING SOFTWARE DESIGN PATTERNS ïï THEORY AND BACKGROUND a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 16 of 197

Table 2.2 ñ òGang of Fouró concepts

Concept

Description

Java 6 Remarks

Delegate The object being forwarded a message in
delegation is called a delegate [Gamma95, p.20].

Another form of composition, supported .

Delegation Using object composition, an object receiving a
message forwards the message to its delegate
passing itself along as an argument [Gamma95,
p.20].

Supported. Delegation implies composition,
but composition does not imply delegation
as aggregation and acquaintance could also
be used.

Dynamic
binding

Runtime association of a message to an object and
one of its methods [Gamma95, p.14].

Supported via polymorphism. The signature
of the method is determined at compile ñ
time, but the actual type of the
(polymorphic) object is determined at
runtime [Sierra06, p.111].

Encapsulation The internal state of an object cannot be accessed
directly, and its representation is invisible from
outside the object [Gamma95, p.11].

Supported, but must be e nforced by access
modifiers.

Framework A set of cooperating classes that makes up a
reusable design for a specific class of software
[Gamma95, p.26].

Generics Parameterised types as used in certain languages
[Gamma95, p.21].

Supported, including support for bounds
and wildñcard types (not found in C++).
Type information is not alwa ys present at
runtime (erasure), and generics do not
allow (static) template specialisation as in
C++. Corresponds to parameterised types.

Instance A created object is a unique instance of its class
[Gamma95, p.15].

Supported. Instances can be compared
based on identity or based on equivalence
(equals).

Instance
variabl e

The internal data of an object are represented as
instance variables [Gamma95, p.15].

Supported. Can also be accessed via
reflection.

Instantiation Objects are created by instantiating a class
[Gamma95, p.15].

Supported. Objects can also be created
reflectively.

Interface The set of all signatures for a given object
[Gamma95, p.13].

Interface as a type is supported, but a class
may also represent the set of all signatures
of an object .

Message An object invokes a method when it receives a
message. Messages are the only way to get an
object to invoke a method [Gamma95, p.11].

Supported.

Method A typical name used to describe the procedures
that operate on object data. If encapsulation is
enforced, methods are the only way to change the
internal state of an object [Gamma95, p.11].

Supported. Can also be accessed and/or
invoked reflectively .

Mixin class A class providing an optional interface or
functionality to other classes, but it is not intended
to be instantiated and requires multiple
(functional) inheritance [Gamma95, p.16].

Mixin classes are not supported , but mixin
types in form of interfaces that require
composition are1. Java supports dynamic
proxies that allow implementation of
interfaces at runtime (reflection) .

1
 The java.io.Serializable and java.lang.Cloneable interf aces are each a hybrid between a mixin class and a mixin

interface. Java has built ñin support for both of these special interfaces that cannot be described by standard interface
semantics, for example default serializable behaviour in form of private inher ited methods.

EVALUATING SOFTWARE DESIGN PATTERNS ïï THEORY AND BACKGROUND a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 17 of 197

Table 2.2 ñ òGang of Fouró concepts

Concept

Description

Java 6 Remarks

Object An object packages both data and procedures that
operate on th e data [Gamma95, p.11].

Supported. All classes inherit

java.lang.Object .

Object
composition

An alternative to class inheritance that composes
(assembles) objects to obtain complex
functionality [Gamma95, p.18].

Supported.

Operation Synonym for method. Supported.

Override A subñclass may override a method defined in its
parent class [Gamma95, p.16].

Supported unless the method is declared
final . Java supports covariant return types.

Parameterised
type

A type that is declared without specifying all the
types it uses until the point of usage [Gamma95,
p.21].

In Java a synonym for generics.

Parentñclass A parentñclass defines data and methods subñ
classes can inherit [Gamma95, p.15].

Supported, also called superñclass. Java
provides access to the superñclass at
runtime as well as the actual instance.

Polymorphism Substitution of objects with similar interfaces at
runtime using dynamic binding [Gamma95, p.14].

Supported. All nonñprimitive classes are
polymorphic in Java as they inherit

java.lang.Object and define their own
type. See dynamic bind ing.

Request Synonym for message.

Signature The name, parameter, and return type of a method
[Gamma95, p.13].

Supported. Can be accessed reflectively.

Subñclass A subñclass inherits (all) data and methods from
its superñclass [Gamma95, p.15].

Supported, but access modifiers determine
data and methods inherited.

Subñtype A type is a subñtype of another type if its
interface contains the interface of its super ñtype
[Gamma95, p.13].

Supported.

Superñtype A type is a superñtype of another type if its
interface is included in the interface of a sub ñtype
[Gamma95, p.13].

Supported.

Template Parameterised types as used in C++ [Gamma95,
p.21].

Not supported by Java.

Toolkit A class library [Gamma95, p.26].

Type A name used to denote a particular interface
[Gamma95, p.14].

Supported, but t ype is usually used to
describe the functionality listed under
Interface. A type is thus a class or
interface.

Whiteñbox
reuse

Reuse by subñclassing [Gamma95, p.19].

Of the eight fundamental concepts identified by Armstrong listed in table 2.1, all but message passing are

described as a distinct concept in some form by Gamma et al. , though some using slightly different names and

meanings, for example polymorphism and dynamic binding . However, message passing is implicitly part of the

message (request) and method (operation) òGang of Fouró concepts. This is similar to method invocation not

being described either . We therefore conclude that the concepts are encompassed by the taxonomy suggested

by Armstrong. As the òDesign Patternsó book predates Armstrongõs taxonomy, it is possible that the tight

EVALUATING SOFTWARE DESIGN PATTERNS ïï THEORY AND BACKGROUND a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 18 of 197

resemblance is an indication of how influential and/or how widely used the òGang of Fouró patterns have been ð

and still are. On the other hand, many of the concepts described are well ñknown OO principles that any

developer has to know to design and implement durable OO designs. Concepts such as classes, inheritance,

polymorphism, etc . , cannot be ascribed to Gamma et al.

There is only one concept we disagree with the definition of , namely encapsulation. From our perspective, the

merging of the different meanings of encapsulation and information hiding by Armstrong is flawed, even though

Gamma et al. do the same [Gamma95, p.11]. Consequently, the Gamma et al. definition of sub ñclass is faulty as

well, because information hiding will determine the data and methods to inherit (see Java remark). We consider

encapsulation and informatio n hiding as two distinct concepts as explained by Rogers [Rogers01]:

Encapsulation is a language construct that facilitates the bundling of data with the methods

operating on that data. Information hiding is a design principle that strives to shield client

classes from the internal workings of a class. Encapsulation facilitates, but does not

guarantee, information hiding. Smearing the two into one concept prevents a clear

understanding of either.

The remarks regarding Java 6 functiona lity in table 2.2 clearly indicates that the concepts are well ñsuited for a

Java environment. Hence, the concepts are adapted to represent our understanding of OO concepts as well,

keeping the distinction between encapsulation and information in mind.

2.1.2. Themes

The first chapter of the òDesign Patternsó book also describes a set of reoccurring themes that permeate the

òGang of Fouró approach to OO development and their design patterns [Gamma95, p.11 -31]. The concepts listed

in the previous section facilitate the themes , but these themes must also be understood in order to understand

the òGang of Fouró design patterns. Two important principles summarise their ideas:

1. Program to an interfac e, not an implementation [Gamma95, p.18]; and

2. Favour object composition over class inheritance [Gamma95, p.20].

Perhaps more than the design patterns themselves, we consider these principles evidence of how signifi cant the

òDesign Patternsó book has been in OO development. They cover the concepts listed in table 2.2, and express

the need for abstraction, loose coupling, and flexibility in OO (reñ) designs. By using interfaces, clients remain

unaware of the specific types (and classes) of objects they use [Gamma95, p.18] . Interfaces are directly

supported as a concept in Java. Gamma et al. promote indirection as a mean to achieve decoupling, flexi bility,

and reuse, and encapsulation, information hiding, and parameterised types may aid in achieving this as well

[Gamma95, p. 19,22]. They prefer dynamic (e.g. runtime) relationships as opposed to static ones and thus favour

object co mposition over implementation inheritance [Gamma95, p.20] . Delegation is the extreme example of

composition, which can always be used to replace inheritance [Gamma95, p.21] . However, dynamic, highly

parameterised sof tware is harder to understand than more static software [Gamma95, p.21], which thus may

EVALUATING SOFTWARE DESIGN PATTERNS ïï THEORY AND BACKGROUND a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 19 of 197

influence the pattern descriptions. The need for reñdesign may still arise, but by following the two principles

and utilising relevant design patter ns expressing them, the process of re ñdesign becomes easier, because then

aspects of a system structure may vary independently of other aspects [Gamma95, p.24]. As Java 6 supports the

concepts from the previous section, these themes can be expressed in Jav a providing a prudent designer.

Many of the principles and themes described by Gamma et al. are represented by the General Responsibility

Assignment Software Patterns (GRASP) [Larman04]. Grand provides a Java version of these pattern s in [Grand99,

p.51-87]. These patterns are not design patterns as such. They do not target a specific problem, but provide

insight into how responsibilities should be assigned to classes to achieve a well ñstructured design , which is

easily understood and maintained [Grand99, p.52]. For example, Low Coupling and High Cohesion [Grand99,

p.53] is closely related to both of the above principles, and Polymorphism [Grand99, p.69] is naturally related to

concepts such as polymorphism, superñclass, subñclass, inheritance, etc. Several of these themes have by some

been promoted to design patterns. Grand provides Delegation [Grand98, p.53] and Interface [Grand98, p.61]

patterns, but whether such fundamental concepts are best expressed as design patterns is doubtful in our view.

2.2. ObjectτOriented Methods
An ObjectñOriented Method (OOM) provides a set of techniques for analysing, decomposing, and modula rising

software system architectures [Schmidt, p.4]. The techniques may be applied in different phases of the software

lifecycle , e.g. in the analysis, design, and implementation phases (see figure 2.1) [Schmidt, p.6] . An OOM can

for example describe how the requirements found in the analysis can be transformed into a software model

consisting of objects [SEI]. Despite the widespread use of OO as explained in section 2.1 on page 13, there is not

only a lack of consensus regarding the formalisation of the relevant concepts and principles inherent in OO, but

also on how to approach the overall design process. Hence, numerous OO methods have been developed, each

trying to remedy this, for example Rational Unified Process (RUP) [RUP] or ModelñDriven Architecture (MDA)

[MDA], but none are an accepted in dustry standard. Different software development processes are used in

various OO methods, such as the sequential Waterfall model , or the Iterative , Spiral, or Agile development . All

but the first are based on the idea of repair and evolution and are in some form iterative in nature , while the

Waterfall model is more static and employs replacement. RUP, for example, uses iterative development.

2.2.1. Patterns

The traits of a given OOM and the procedures used will guide the OO development . It is difficult to specula te on

the impact a given OOM has on the application of design patterns , if any , without in ñdepth knowledge and

experience with each method . Vlissides, one of the òGang of Fouró members, argues that patterns do not need

tools or methodologies to be effectiv e [Vlissides97, i.4] . Based on experience we agree. However, certain

methodologies directly address the use of patterns or other techniques , such as UML. Responsibility Driven

Design has no mention of patterns what so ever [WirfsBrock90], while Extreme Programming (XP), for example,

deñemphasises or even ignores the need for patterns [Fowler04].

Nevertheless, we do not even see XP as incompatible with design patterns. XP is a software e ngineering

EVALUATING SOFTWARE DESIGN PATTERNS ïï THEORY AND BACKGROUND a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 20 of 197

methodology developed mainly by Kent Beck and Ward Cunningham, the duo that also introduced software

design patterns [Beck87] as described in section 3.2 . It is typically used in Agile development , and is iterative in

nature. It advocates the use of Evolutionary Design contra to Planned Design under certain preconditions

[Fowler04]. Central is the use of several enabling practices, such as testing, refactoring, a nd continuous

integration that embodies and encourages certain values, such as simplicity and communication. This allows

changes to be performed much faster and cheaper, thus reinforcing the enabling practices [Fowler04; PPR]. Due

to the evolutionary nature of this methodology , it is often believed that Object ñOriented Analysis (OOA), Design

(OOD), and design patterns are incompatible with XP. Others, such as Fowler, think that patterns are underrated

within XP, and are in no way contradictory to the paradigms of XP and that program code developed using the

methodologies can evolve into patterns during refactoring. We agree, and conclude that the enabling practices

of XP to some extent can be viewed as a form of pattern d iscovery, or mining (see section 3.8.1).

Designers often feel strongly about their preferred development method, OO or otherwise, sometimes to the

point of a religious belief. In many respects, we see design patterns as orthogonal to OO methods, because the

objects and knowledge they represent are independent of which method produced the (initial) context to which

a pattern can be applied. While design patterns can be grouped in collections, such as pattern syst ems and

languages as explained in section 3.7 , the effect of this in our experience rarely influences their practical

application when used in a specific process. Their application is thus largely independent of the OOM used.

2.3. Unified Modelling Language
Regardless of OO method and processes used, the Unified Modelling Language (UML) is generally used for object

modelling and illustration [UML05]. UML is an extensible generalñpurpose object modell ing and specification

language used to create abstract (design) models illustrated graphically. It is not limited to modelling software,

but is widely used in various OO methods. The model of the system can be described using a Functional Model

(userõs point of view); using an Object Model (structural); and/or using a Dynamic Model (internal behaviour).

Different models use different types of diagrams, for example a Use Case Diagram for the Functional Model; a

Class or Object Diagram for the Object Model; a nd a Sequence Diagram for the Dynamic Model [UML05].

UML can be used in various development phases. Use Case Diagrams can specify demands the analysis must

adhere to (see also [Cockburn01]) . Class and Object Diagrams can be used in the design phase to describe the

identified classes and objects, and Sequence Diagrams can illustrate the behaviour of classes, objects, and

methods. As the design evolves, so must the diagrams. UML does not have builtñin notations for a ll features

found in Java 6, such as annotations, but can be adapted by user ñdefined extensions.

2.3.1. Patterns

Patterns related to OO development commonly use UML models, because the pattern participants (i.e. classes

and objects) are easily i llustrated using the UML models. Graphical illustrations of pattern functionality are a

requirement to ensure proper quality of the pattern as well as a meaningful description of its functionality as

explained in section 3.3 and 3.5 , respectively . The òGang of Fouró patterns predate UML, but use other forms of

EVALUATING SOFTWARE DESIGN PATTERNS ïï THEORY AND BACKGROUND a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 21 of 197

closely related types of illustrations. In this thesis, only UML Class diagrams are used. Section 6.2 details the

usage, but the evaluation produces a Class diagram for each pattern implementation.

2.4. ObjectτOriented Analysis
As illustrated in figure 2.1, ObjectñOriented Analysis (OOA) is the first phase in OO development , exclud ing

mundane tasks such as sale, legal affairs, project planning, and management in real corporate environment s. A

typical scenario is that a given client has produced a (far from complete) list of demands identif ying the overall

behaviour of the system that must be built . The demands can be specified in a number of ways, for example as

Use Cases [Cockburn01, p.1 -3]. The analysis is concerned with developing software engineering requirements

and specifications from these demands, often expressed in form of a conceptual object model, as opposed to

the traditional data or functional views of systems [Larman04; SEI]. The analysis is a discovery process that

determines what is to be built, and the design determines how it is done [Schmidt, p. 6; SEI; WirfsBrock90, p.5].

This is done by identifying the (real ñlife) abstractions, concepts, responsibilities , and relationships present in

the system in order to form a conceptual model of the system while adhering to the demands . The practical

procedures on how to do this as well as how the model is described are typically dictated by the Objectñ

Oriented Method (OOM) used.

Example 2.1 ïï Consider the task of designing a sophisticated notification mechanism able to notify

subscribers when certain events occur with support for different means of deliveries. Example usage could be in

Internet applications that must notify users when certain events occur, data driven or otherwise , or as a mean

to monitor application usage and abnormalities. The demands set forth by the client will (or should) specify the

overall context and desired functionality . From these, t he analysis must identify the relevant concepts and their

interactions forming the conceptual model of the notification mechanism. The notification mechanism is used as

a continuous example in the first part of this thesis. This chapter offers a number of examples illustrating how

different development phases and patterns may influence the development of such a mechanism .

Simplified , the abstractions and concepts could include User, Subscription, Notifiable, Event, Notification,

Scheduler, Processor, Delivery, Formatter, and Message; a User, for instance, could be an abstraction of a

logical entity known to the system, such as an identified human or program, while Notifiable is a more abstract

concept related to f unctionality rather than a physical entit y. To express the relationships, the model could

specify that a User can have different Subscriptions pertaining to different Notifiable contexts, e.g.

subscriptions to receive different kinds of notification s. When a certain Event occurs related to a Notifiable

context , a Notification will be created and scheduled by a Scheduler. Based on the Notification, relevant

Subscriptions will be identified by the Processor handling the Notification , and Messages will be created and

formatted by a Formatter as required by the Delivery mechanism preferred by the User . Furthermore, the

conceptual model must describe the responsibilities related to the core functionality of each concept ; for

example, the type of Delivery must ensure that a proper type of Message is formatted and delivered , or perhaps

even create it . Once the conceptual model is defined and described, the design phase will determine how the

model must be utilised from a software perspective , i.e. how it should be t ransformed into program code ƴ

EVALUATING SOFTWARE DESIGN PATTERNS ïï THEORY AND BACKGROUND a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 22 of 197

2.5. ObjectτOriented Design
ObjectñOriented Design (OOD) is the process of defin ing the software objects and collaborations forming an O O

model of a software system in order to implement the identified requirements found during the analysis

[Larman04; SEI; WirfsBrock90, p.10]. The design phase is thus the second phase in OO development and where

the analysis determines what is to be built, the design is a process of invention and adaptation that determines

how it is done [Schmidt, p.6; SEI; WirfsBrock90, p.5]. While t he conceptual model identified during the analysis

describes conceptual objects unrelated to so ftware terminologies , the OO model describes the computational

software objects needed to implement the functionality of the model instead. The mapping between objects is

rarely or never oneñtoñone. The system is decomposed into (complex) software objects of relevant granularity,

some perhaps mapping to existing reñusable components. Detailed descriptions consisting of message protocols

(òpatterns of communicationó), attributes, and methods (òpublic behaviouró) at the level of individual objects

should be specified [WirfsBrock90, p. 10,28].

Example 2.2 ïï To implement a design for the notification mechanism described in example 2.1 the

conceptual model must be transformed into a model of collaborating software objects. Model objects such as

User, Subscription, Notification , Message, Formatter, and Delivery may map directly to similar software objects,

or types, e.g. to User , Subscript ion , Notification , Message , Formatter , and Delivery software

objects, respectively . A software object may be designated as abstract , which will requir e specific

implementations for usage as well . For example, the Delivery object could map to a Delivery int erface with

specific implementations such as EmailDelivery , SMSDelivery , and SNMPDelivery , which in turn could

require abstract Message , Formatter , and Subscription types as well. Coarse or complex model objects

may require numerous software objects or even libraries to represent the functio nality . For example, an object

doubling as both a Scheduler and Processor must implement a Scheduler and a Processor interface . The UML

Class diagram below shows such a scenario.

Conversely, certain model objects may no t even require a structural counterpart such as a class/object ; this

could be the case with an Event object, which could be defined as the executing context creating and

scheduling a Notification object simply using method invocation s. On the other hand, s ome software objects

may have no direct conceptual counterpart , as for instance a NotificationRelation object expressing a

specific relationship between a Notification scheduled for later processing using a certain Delivery type.

EVALUATING SOFTWARE DESIGN PATTERNS ïï THEORY AND BACKGROUND a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 23 of 197

Once the software objects have been identified, their responsibilities and relationships must be established and

described (òfine design granularityó). As seen in the UML diagram above, the Scheduler object could have a

schedule(Notification) method as well as a getScheduledNotifi cations() method to return the

Notification objects scheduled by that Scheduler contained in NotificationRelation objects. Similar,

the Processor could have a process(NotificationRelation) method as well as a

getProcessedNotifications() method to return re lations processed by that Processor . Here, the

Scheduler and Processor are the same type (and instance), but that is not a requirement . The design will not

only identify the attributes and methods, but also the overall internal logic of the methods . Finally, depending

on the demands at hand, the mechanism could be designed as a standalone library used in a large OO systems,

or as part of the system itself (òlarge design granularityó). If designed as a library, it could be used in other

design scenarios, but this raises the need for a good, durable, and flexible design even more ƴ

The practical procedures on how to execute the design phase, i.e. how objects and responsibilities are identified

as well as how the design is presented, are typically described by OOM used combined with personal experience,

for example using the Responsibility Driven Design process suggested by WirfsñBrock et al. [WirfsBrock90].

However, Fowler states that it can be hard to distinguish between the analysis and design phase in practice

[Fowler97]. WirfsñBrock et al. do not even label the initial phase as the analysis phase, but as part of the design

phase. Nevertheless, the design phase requires the specification of concepts nonex istent in analysis, such as the

logic of object methods or the types of the att ributes of an object or class [SEI] , as for example a name

attribute of the User class identified in example 2.2 having the type java.lang.S tring . Furthermore, the

design may seem closely related to the implementation , and in particular OO Programming Languages (OOPL),

because it will typically be represented by diagrams such as UML Class and Object Diagrams sharing similar

notions [UML05]. The design does not require an OOPL for implementation, but an OOPL will facilitate the

implementation considerably, though the variant of the OO paradigm supported by it will also play a role.

The choice of programming language is import ant already in the design phase . The language may implicitly

affect the design if it affect s the design patterns used. In [Norvig96], Norvig differentiates between three types

of programming relevant for the design: a) Programming In a language; b) Programming Into a language; and c)

Programming On a language [Norvig96, p.58] . In case a), t he design is constrained by what the language offers .

In case b), t he design is done independently of any language, then implemented using features available in the

chosen language. In case c), t he design and language meet half way. Norvig explains this as programming into

the language you wish you had; a language buil t on the actual language chosen. Ideally, patterns represent case

b). Unfortunately, the choice of programming l anguage may already have been made, for example based on

client demands, and this may force a given type of de sign and programming relation.

2.5.1. Patterns

In our experience, real ñworld problems seldom map to software objects representing real ñlife entities, but

rather to programmatic abstractions, i.e. objects of varying granularity , of required functionality. As stated,

identifying the objects, their relationships, and interactions is no trivial matter . This is where software patterns

come in handy, because they provide solutions to many of the problems faced while designing such objects (or

EVALUATING SOFTWARE DESIGN PATTERNS ïï THEORY AND BACKGROUND a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 24 of 197

òcomponentsó): a given pattern ha s already identified a set of objects, relationships, and respo nsibilities

required in a given scenario. The knowledge represented by the pa tterns can be adapted and utilised by the

designer yielding familiar variants of already well ñknown scenarios. Chapter 3 provides a thorough introduction

to pattern theory , not necessarily related to OO .

Patter ns can describe solutions to various areas and the pattern concept originated within the field or

architecture . According to Vlissides, a common misconception is that software patterns are just for OO design

and implementation , but patterns can be applied in numerous areas [Vlissides97, i.7]. Furthermore, i t is

commonplace that any pattern related to design , software or otherwise, is dubbed design pattern . However,

according to Lea, within computer science, the term design pattern reflects a categorisation to identify a

specific range of patterns related to the design of software systems [Lea00, i. 3] . In accordance with this,

Buschmann et al. suggest a pattern taxonomy that categorises patterns pertaining to design a s architectural

patterns, design patterns, or idioms depending on their range of scale or abstraction [Buschmann96, p.12 -15].

Others, for example Hohmann [Hohmann98], extend the taxonomy to include analysis patterns as described by

Fowler [Fowler97]. Table 2.3 illustrate s the extended and slightly modified taxonomy used in this thesis.

Table 2.3 ñ Pattern taxonomy

Category

Description

Target

Architectural Patterns An architectural pattern expresses a fundamental structural
organisation schema for software systems. It provides a set of
predefined subñsystems, specifies their responsibilities, and
include rules and guidelines for organising relationships
between them [Buschmann96, p.12].

Entire (subñ) systems,
applications, and
frameworks

Analysis Patterns An analysis pattern reflects the conceptual structure s of
business processes rather than actual software
implementations [Fowler97, p.XV].

Domain and Business
Object Model

Design Patterns

A design pattern provides a scheme for refining the sub ñ
systems or components of a system, or the relationships
between them [Buschmann96, p.13]. It does so by describing
communicating objects and classes that are customised to
solve a general design problem in a particular context
[Gamma95, p.3].

Microñarchitectures
within subñsystems or
components

Idioms An idiom is as a lowñlevel pattern, specific to a particular
programming language that describes how to implement
particular aspects of components or the relationships between
them using the features of the given language [Buschmann96,
p.14]. An implementation of a design pattern that is unique to
the language chosen is also considered an idiom in this thesis.

Classes, Objects, and
Methods

Architectural patterns have large design granularity and are thus used early in the design phase . Analysis

patterns are related to the domain and business object model of the system, if any , while design patterns can be

used throughout the entire design phase. Though design patterns target subñsystems, they are only used to

define specific and encapsulated functionality within the systems. Hence, the granularity of analysis patterns if

often larger than design patterns. Idioms have fine granularity and are closely related to the implementation

phase. This is illustrated in figure 2.1 on page 13. Design patterns (indicated with the grey row in table 2.3) are

EVALUATING SOFTWARE DESIGN PATTERNS ïï THEORY AND BACKGROUND a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 25 of 197

the category of pa tterns evaluated in this thesis, and unless explicitly stated otherwise, the term design pattern

as used in this thesis indicates this category of software patterns.

2.5.1.1. Architectural Patterns

Patterns categorised as architectural express fundamental structural organisati on schemas for software systems.

They have large granularity and their introduction into the early stage of the design phase will greatly influence

the system, includin g the detailed design of sub ñsystems and how different parts collaborate and communicate

[Buschmann96, p.25 -26]. Architectural patterns are still only applicable for a given scenario and do not

represent a complete software architec ture. H ence, several patterns may need to be applied to form the entire

system. As is the case with design patterns, architectural patterns may be classified according to their overall

purpose, for example as Adaptable Systems, Interactive Systems, or Dist ributed Systems [Buschmann96, p.26] .

Buschmann et al. also suggest a number of patterns, known as the òPOSAó patterns, for instance the

architectural ModelñViewñController Pattern [Buschmann96, p. 125], which we have used extensively in the

design of numerous applications 2.

Example 2.3 ïï The notification mechanism described in example 2.1 on page 21 can be designed as a

standalone library, or even framework allowing for customisation in form of an API . It is reasonable to assume

that Users, Subscriptions, scheduled Notifications, and Messages must be serialised to a perhaps permanent store

to handle identification of pre ñexisting users and subscriptions, application shutdown , and reñdeliveries. The

Layers [Buschmann96, p.31] architectural pattern suggest to divide the architecture into layers dedicated to

different tasks, for example a database layer handling the persistence of the objects and a layer handling t he

application logic . An API can by it self be considered a variant of the Layers pattern [Buschmann96, p.46] .

Fowler identifi es specific variants of the Layers pattern, for example Two ñTier Architecture [Fowler97, p.240]

corresponding to the scenario in this example ƴ

While architectural patterns can have tremendous impact on the design of the software system, we for the most

part see design patterns as autonomous from their application . Of course, a design pattern such as the View

Handler Pattern [Buschmann96, p.291] is a refinement relevant to the infrastructure offered by the Model ñ

ViewñController Pattern , and Creational òGang of Fouró design patterns behaviour could be affected if the

architectural Reflection Pattern is applied [Buschmann96, p.293] . However, the granularity of design patterns

and their general versatility makes them useful and relevant in many different architectural contexts, for

example the òeverñapplicableó Iterator [Gamma95, p.257] and Decorator [Gamma95, p. 175] pattern s.

2.5.1.2. Analysis Patterns

At the core of many Information Systems (IS) is the business object model that do represent real ñworld entities,

for example a mapping of a company to a Company object. The business object model is said to represent the

domain of the system. Hence, the business object model is often closely related to the conceptual model

constructed in the analysis phase, but it is often just a relative small part of the entire system. H owever, the

2
 The òPOSAó pattern system contains architectural patterns, design patterns, as well as idioms.

EVALUATING SOFTWARE DESIGN PATTERNS ïï THEORY AND BACKGROUND a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 26 of 197

business object model is a truly pivotal part because it effectively defines the system behaviour: instances of

model objects are to be manipulated by the system while adhering to the business rules, thus defining the

overall behaviour. Because a wellñdesigned business model is so important, patterns have even been developed

targeting the domain specifically. Fowler presents a comprehensive set of analysis patterns targeting reusable

parts of business object models [Fowler97], some even at a granularity level corresponding to architectural

patterns as illustrated with the Two ñTier Architecture [Fowler97, p.240] pattern in example 2.3. However, a

business object model cannot stand by it self, or may not even be utilised in a design. The total functionality

required to manipulate the business object model, directly or indirectly, will in terms of objects vastly out

number objects in the model. For example, in Internet applications auxiliary objects are required to handle of

incoming browser requests, security, logging, persistence of data, errors, rendering, etc. Such objects rarely

have realñworld counterparts . Examples could be a Logger object to log diagn ostic messages; a Request

object to represent input to the application; or in the case of example 2.2, a NotificationRelation object.

Even if a system does not use a business object model as such, it will always have a core functionality that

requires many auxiliary objects with additional functionality. Hence, the design of business system is not just

about designing the business object model, but naturally about designing the entire system . The use of analysis

patterns does not exclude the need for design patterns.

2.5.1.3. Design Patterns

The design pattern categorisation is almost directly based on the òGang of Fouró definition of design patterns .

The precise definition used in this thesis is shown in table 2.3. The òGang of Fouró patterns [Gamma95] are a

collection of patterns targeting the domain of design problems closely related to pragmatic problems found in

general OO designs. Gamma et al. define design patterns as [Gamma95, p.3]:

Descriptions of communicating objects and classes that are customized to solve a general

design problem in a particular context.

Gamma et al. further explain that the domain of design pat terns is describing concepts and structures beyond

individual objects and classes up to the granularity level of refinement of OO subñsystems. Algorithms are not

considered a pattern by this, or other , definitions ; they solve computational problems, not de sign problems. This

definition of design patterns is roughly equivalent to the domain of the design pattern categorisation described

by Buschmann et al. [Buschmann96, p. 13], except that Buschmann et al. do not explicitly mention OO . Our

definition implies an overall OO domain . Borchers [Borchers99, p.2] offers a broader definition that does not

require classñbased languages, or even a specific domain:

A software design pattern is generally considered to be a proven solution of a recurring

software engineering problem that balances the competing design constraints optimally for a

certain type of situation.

This broader definition implies the choice of pattern has consequences. This is an important aspect of patt erns

as explained in chapter 3. As the òGang of Fouró patterns are evaluated in this thesis, we see no reason not to

use the òGang of Fouró definition. Hence, design patterns both describe the òGang of Fouró patterns, but also

EVALUATING SOFTWARE DESIGN PATTERNS ïï THEORY AND BACKGROUND a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 27 of 197

the category of patterns targeting the same domain. Many other commonly used design patterns have been

published as well, for example the òPOSAó patterns 3 [Buschmann96]. The problems design patterns address arise

more frequently than issues purely related to the business object model as targeted by analysis patterns .

Example 2.4 ïï In example 2.2 on page 22, we identified the need for an abstract Delivery type with

concrete implementations representing different means of delivery mechanisms, such as EmailDelivery ,

SMSDelivery , and SNMPDelivery to deliver messages via email, SMS, or the Simple Network Management

Protocol (SNMP), respectively . The design must ensure that only the proper types of Message objects will be

delivered using a given delivery mechanism; that the messages will be formatted to a representation suited for

such a delivery; and that additional means of delivery could fairly easy be added ð but how?

A designer familiar with the òGang of Fouró patterns will immediately recognise that the Abstract Factory

[Gamma95, p.87] and Factory Method [Gamma95, p.107], and perhaps the Singleton [Gamma95, p.127] and

Template Method [Gamma95, p.325], design patterns could be utilised here. The Abstract Factory pattern can

be used to ensure that the Delivery and Formatter types used together are to correct ones, making use of

the Factory Method to defer the actual creation elsewhere, which also allows for easy introduction of new

Delivery and Formatter types. The Singleton pattern can be used to ensure that th e notification mechanism

creates Delivery and Formatter objects in a uniform way not breaking the loose coupling offered by the

factory patterns by ensuring that only a single factory is available . Finally, if the notification mechanism is

designed as a library, the Template Method pattern can be used to define hooks in various objects that the

client can override to add additional functionality or means of delivery ƴ

2.5.1.4. Idioms

Buschmann et al. describe an idiom as a lowñlevel pattern , specific to a particular programming language that

describes how to implem ent particular aspects of components or the relationships between them using the

features of the given language [Buschmann96, p.14]. The classification is based on the work by Coplien in

[Coplien91]. We furthermore claim that any design pattern is implemented as an idiom if the specific

implementation is unique to the language . An example is a Java implementation of the Singleton pattern using

the synchronized statement to ensure that only a single instance is created . While the implementation can be

considered a Java idiom, the abstraction is still a design pattern. This indicates a closer relation between design

patterns and idioms and thus the implementation , which is illustrated in figure 2.1 on page 13. Buschmann et al.

also note that certain design patterns provide a source for idioms [Buschmann96, p.350] .

2.6. ObjectτOriented Programming
The objects described in the design phase must be transferred into program code . Languages supporting an OO

paradigm will facilitate this process, for example by directly offering language constructs such as objects,

3
 The Command Processor [Buschmann96, p.277] design pattern implemented as part of the Command pattern in section

8.3.2.3 is in fact a òPOSAó pattern.

EVALUATING SOFTWARE DESIGN PATTERNS ïï THEORY AND BACKGROUND a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 28 of 197

classes, and inheritance . Other types of languages can be used as well, but will require more work during

implementation . The implementatio n phase is often called Object ñOriented Programming (OOP), but OOP is

also commonly used to denote OO in general. This thesis refers to the implementation phase as OOP. More so,

Sethi describes OOP as a programming paradigm, where execution is normally imp erative and data is

conceptualised in cooperating and communicating objects representing logical entities [Sethi96, p.15 -16], i.e.

closely related to the programming language chosen. Languages supporting an OO paradigm are called OOP

languages (OOPL).

Example 2.5 ïï To implement the design of the notification mechanism described in example 2.2 on page 22 a

programming language must be chosen. If the design is described using UML Class Diagrams, the conceptual

model entities are represented by classes. All User objects are thus represented by the User class, Delivery

objects by a Delivery interface, etc. A classñbased language like Java would be the obvious choice to

transform the design to program code, because the language directly support classes and inheritance as part of

the syntax. The User type could directly be defined as class User , and a specific Del ivery implementation as

class EmailDelivery implements Delivery , for example. On the other hand, if a prototype ñbased

language is chosen as the programming language, the relationship between Delivery and EmailDelivery

would have to be expressed differently ƴ

Implementation is not the last phase in the software life ñcycle, but the last phase relating to the design.

Testing, deployment , and evaluation are key phases that might spawn new demands, which in turn may cause

the development cycle to re ñiterate .

2.6.1. ObjectτOriented Programming Language

Ideally, the relation between the design and implementation should be in form of Programming Into a language

as described by Norvig [Norvig96, p.58] , i.e. the design should be designed independently of any programming

language (see section 2.5). A programming language that has built ñin support for an OOP paradigm is an obvious

choice to use when the design must be implemented, because such languages direct ly support the object notions

of objects, encapsulation, information hiding, polymorphism, and in case of class ñbased languages classes and

inheritance [SEI; WirfsBrock90, p.10]. In short, most of the concepts from the concepts presented in section 2.1 ,

which Java 6 does. Below, table 2.4 offers a quick comparison of some of the more interesting features found in

C++, Smalltalk, and Java 6 based on [Gamma95; Gosling05; Stroustrup91].

Table 2.4 ñ Comparing C++, Smalltalk, and Java 6

Language

Paradigms

Type System

Example Features

Implementation

C++ Hybrid, Classñbased,
Imperative, Procedural

Strong, Static Templates, Multiple Inheritance,
Overloading, Overloaded Operators

Static (RTTI),
Compiled

Smalltalk Pure, Classñbased,
Imperative, Reflection

Strong, Dynamic Duck Typing, Inheritance,
Overloading, Overloaded Operators

Runtime,
Bytecode, JIT

Java 6

Hybrid, Classñbased,
Imperative, Reflection,
Concurrent

Strong, Static

Generics, Inheritance, Interfaces,
Overloading, Dynamic Proxies,
Annotations

Runtime,
Bytecode, JIT

EVALUATING SOFTWARE DESIGN PATTERNS ïï THEORY AND BACKGROUND a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 29 of 197

Other types of languages can be used as well to implement a design, though not as easily. For example, a class ñ

based design implemented in a language not supporting classes must utilise, or even invent, means to represent

classes and inheritance. This corresponds to Programming On a language [Norvig96, p.58]. Programmatic

features must be introduced to support the requirements of the design. OOP languages will be easier to use in

conjunction with design pattern s as well because design patterns build on the fundamental OO concepts.

2.6.2. Patterns

If design patterns were utilised in the design phase, the patterns will supply canonical implementations or at

least examples on how to implement the required functionality. As Gamma et al. already note , the choice of

language will affect the pattern application because the language will ultimately decide what can and what

cannot be done (easily) in light of supported programming paradigms [Gamma95, p.4]. In case of a Programming

In a language or Programming On a language relation between the design and programming language [Norvig96,

p.58], d esign patterns can help establish wanted features . That is, to avoid limitations of the implementation

language [Norvig96, p.4] . However, t he pattern examples must be modified to the language chosen and to the

scenario at hand, which may raise issues in case the language does not support features utilised in the examples

or the p roblems inherent to the scenario . We have already established that Java 6 supports practically all

concepts from section 2.1.1 . Still, the concepts do not describe all specific programmatic features us ed in the

examples, such as multiple inheritance in C++ or codeblocks in Smalltalk. The Java 6 implementations must find

alternative ways to implement the desired functionality.

The patterns used may also reflect part of the authorõs approach to OO development, fo r example the two

important principles for OO development defined by Gamma et al. that are listed in section 2.1.2 on page 18: 1)

program to an interface, not an implementation [Gamma95, p.18]; and 2) favour object composition over class

inheritance [Gamma95, p. 20]. By applying the òGang of Fouró patterns, these principles will be reflected in the

developed source code. By repeatedly using the òGang of Fouró patterns, these principles may be promoted by

the developer to core principles that will be applied elsewhere in the design process as well.

The knowledge represented by some design patterns can be implemented as reusable components. The process

of implementing patterns as reusable components is called òcomponentizationó by Meyer and Arnout [Arnout06].

This is discussed in chapter 4. Pattern components make the implementation phase much easier, but also fixate

the behaviour to the functionality available. Certain design patterns are so u niversally applicable that

programming languages offer implementations of them as part of the language or its core libraries . For example,

it is widely known that Java has builtñin support for the Iterator, Observer, and Proxy patterns. The

java.util.Iterator <E> interface describe s the Iterator pattern functionality as understood in Java with

numerous standard implementations in the Java Collect ions Framework4. Iterators in Java , for example, are

defined to fail immediately in case of concurrent modification, thus addressing , but fixating behaviour only

discussed in [Gamma95, p.261] . Additionally, any class implementing the ja va.lang.Iterable<T> interface

4
 See http://java.sun.com/javase/6/docs/technotes/guides/collections/overview.html .

http://java.sun.com/javase/6/docs/technotes/guides/collections/overview.html

EVALUATING SOFTWARE DESIGN PATTERNS ïï THEORY AND BACKGROUND a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 30 of 197

must return an iterator, which can be used directly in the forñeach loop introduced in Java 5. The

java.util.Observer interface combined with the java.util.Observable class describes the functionality

needed to implement the O bserver pattern , but is in our experience rarely used . Perhaps because it utilises

deprecated collection types ; that the default implementation is too simple ; or because developers prefer unique

method names to identity different types of events . We do not think it is unreasonable to consider that poor

implementations may cause developers to become biased towards not using a pattern at all or at least in the

given language. As a side note concerning the Observer pattern , the Java thread notification model d escribed by

the wait() and notify() methods in java.lang.Object can be viewed as a variant of it . Finally, t he

java.lang.ref lect .Proxy class combined with the java.lang.ref lect .InvocationHandler interface

are an advanced implementation of the Proxy pattern that exploits Javaõs reflection mechanism in a manner

totally different from the canonical implementation supplied in [Gamma95, p.210-215].

A programming language should be chosen from the device òthe right tool for the right jobó once the initial

design has been established. In reality, the choice is often made beforehand. The regular usage of a

programming language supporting certain design patterns will affect the way the developer thinks of the specific

design patterns. It may ease the development process, but it may also fixate how the developer perceives

pattern behaviour. The choice of programming language is therefore important to establish as early as possible .

2.7. Summary
By abstracting out knowledge and encapsulating it within objects , the OO approach to software design

attempts to manage the complexity inherent in real ñworld problems. Identifying the proper objects , their

relationships , and collaborations is the key to a successful design of any OO system.

ObjectñOriented analysis (OOA), design (OOD), and implementation (OOP) is part of OO development and the

software lifecycle for OO systems. The analysis develop s the software engineering requirements and

specifications , often expressed in form of conceptual object model . The design must define the software

objects and collaborations forming an OO model of a software system to implement the identified

requirements . Compared to other forms of software development, the design phase is larger, emphasis ing the

need for good and durable designs even more. The analysis determines what must be built; the design

determines how it should be done. The implementation must implement the design using a programming

language. A programming language that has built ñin support for an OOP paradigm (OOPL) will be easier to use,

for example C++ and Java supporting class ñbased programming , but other languages can be used as well.

Different OO methods (OOM) can be used to guide the design and development process, offering procedures

and principles to f ollow within the realm of OO development . A given method may dictate that the development

phases may be reñiterated and/ or overlapping.

Software patterns can be used as a tool in the design and implementation process regardless of the OOM

chosen, because we view patterns as orthogonal to the OOM used in many respects. Different pattern

categories may be utilised in different phases of the design . Architectural patterns have large design

EVALUATING SOFTWARE DESIGN PATTERNS ïï THEORY AND BACKGROUND a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 31 of 197

granularity and are thus used early in the design phase, while design patterns can be used throughout the

entire design phase . Analysis patterns are related to the business object model , or domain, of the system.

Idioms are closely related to the implementation phase. The òGang of Fouró patterns are classified as design

pat terns . Regardless of the OOM chosen, UML is often used to model the design , including pattern

implementations , visually. The strength of patterns is that they represent well ñproven solutions to commonly

known and re ñoccurring problems based on empirical kn owledge , thus aiding and facilitating the design

process. Several languages have built ñin support for commonly applied patterns , such as the Iterator pattern

in Java, which makes the implementation and usage easy , but may also fixate pattern behaviour and affect

the way the developer perceives the patterns in question. This is an indication of patterns and programming

languages influence each other .

This thesis investigates the òGang of Fouró design patterns described by Gamma et al. As the design pattern s

build upon OO, the fundamental OO concepts must be understood. We adapt OO concepts identified by Gamma

et al. because they are inherent to the pattern application and very well suited for Java environments .

EVALUATING SOFTWARE DESIGN PATTERNS ïï THEORY AND BACKGROUND a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 32 of 197

3. Patterns

A pattern foreshadows the product:

it is the rule for making the thing, but it is also,

in many respects, the thing itself.

ïï Jim Coplien

Christopher Alexander originally described patterns and pattern languages as a mean to improve twentieth

century architectural design methods and p ractices. Patterns have since been shown to be applicable in many

other areas as well, perhaps most notably within the field of computer science and especially manifested as

software design patterns related to OO development . This chapter presents the ideas set forth by Alexander and

the connection to software design patterns . We describe the core pattern concepts, such as pattern languages,

entries, qualities, forces, descriptions, and formats, which must all be understood in order to understand what a

pattern represents, and hence to perform a meaningful evaluation . We explain how the general pattern

concepts relate to software patterns and in particular to OO and the òGang of Fouró design patterns. We also

present the òGang of Fouró pattern system containing the twenty ñthree òGang of Fouró design patterns, and

explain how the patterns are classified and related. Throughout this chapter, we try to make the theory

concrete by supplying several practical examples, and we present our views on many of the discu ssed topics.

This will help understand the practical application of the òGang of Fouró patterns in the evaluation.

3.1. Christopher Alexander
Software design patterns are based on the ideas set forth by Christopher Alexander , a licensed contractor and a n

architect , who introdu ced and explained patterns and pattern languages in [Alexander77; Alexander79]. These

texts were preceded and followed by a rather large number of others on closely related topics . We only give a

short (and far from complete) introduction to Alexanderõs numerous writings, primarily based on [Appleton97;

Appleton00; Lea93] unless specifically noted otherwise .

According to Lea, Alexander postulates that there is something fundamentally wrong with twentieth century

architectural design m ethods and practices; a certain Quality Without A Name (QWAN) is missing from

constructed environments. QWAN cannot be summarised briefly and no single term exist to convey or capture its

meaning, but Alexander explains QWAN using partial synonyms closely related to the human impact on the

design process like freedom, life, wholeness, and harmony [Lea93]. Consequently, constructions do not satisfy

the real demands of users and society, because the genera ted environment does not have a coherent form ,

thereby fail ing the basic requirement that design and engineering improve the human condition. His ultimate

goal is to build viable living structures for the people who live and work there. To remedy these shortcomings,

Alexander suggests letting the inhabitants of the towns and buildings themselves take part in the design and

practices using easily understandable patterns and pattern langua ges. This will ensure that far more inhabitable

constructions will be made ð structurally and spiritually ð that will have that certain nameless quality w e should

strive for , thus reaching a coherent form. Alexanderõs patterns are design patterns concerning architecture.

EVALUATING SOFTWARE DESIGN PATTERNS ïï THEORY AND BACKGROUND a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 33 of 197

Alexander never gives a formal definition of a pattern or a pattern language [Lea93], but offers the following

explanation [Alexander79, p.247] :

As an element in the real world, each pattern is a relationship between a certain context, a

certain system of forces, which occurs repeatedly in that context, and a certain spatial

configuration, which allows these forces to resolve themselves. As an element of language, a

pattern is an instruction, which shows how this spatial configuration can be used, over and

over again, to resolve the given system of forces, wherever the context makes it relevant.

The notion of a pattern is thus two ñfold. F irstly, a pattern is an abstraction of practical experience a nd basic

knowledge; it is not invented as such, but discovered (or mined), and Alexander even states that some patterns

are universally known [Alexander79; Lea93]. The idea is to identify the conflicting forces within a given context,

and then find a solution that brings them into harmony. A pattern not only identifies a solution, it also explains

why the solution is needed [Appleton00]. Applying a pattern is the process that generates such a solution, but

variant solutions may be generated. Alexander therefore emphasises letting the inhabitants (e.g. endñusers)

take part in the design and stresses that human interaction is an absolute necessity in applying patterns . In

Alexanderõs domain of designing and constructing buildings and towns (òneighbourhoodsó or òurban planningó),

a context could be an entire town or just a house . Conflicting forces could be the known problems related to

building, say, a house. This implies that patterns may be applicable at different levels in the design and

therefore have different granularity , ordered in a hierarchical structure.

Secondly, the solution must be recorded, or described , so it can be reused in similar contexts . Alexander

suggests a format to describe patterns in a literary nonñmathematical form having the elements Name,

Example, Context, Proble m, and Solution [Lea93]. However, not everything that can be described using a

pattern format can be considered a pattern. A pattern (entry) must ideally have a set of properties to ensure its

quality, namely Abstraction, Composibility, Encapsulation, Equilibrium, Generativity, and Openness

[Appleton00]. The pattern must also describe the forces that it balances . If well written, each description

describes a whole that is greater than the sum of its parts [Lea93]. The presence of these properties combined

with all the required pattern elements is what makes pattern entries more than just principl es, heuristics, rules,

or algorithms [Coplien, i.8-9; Lea93]. On the other hand , a pattern description will often contain the former,

i.e. heuristics, etc . , and use them as part of the pattern [Appleton00]. However, pattern descriptions leave

room for interpretation. As Alexander desires living and constantly evolving architectures, patterns may be

applied differently in equivalent contexts to reflect subtle changes . In [Alexander77], he writes:

Each pattern describes a problem which occurs over and over again in our environment, and

then describes the core of the solution to that problem, in such a way that you can use this

solution a million times over, without ever doing it the same way twice.

The idea of using òdescriptive manualsó of òBest Practicesó as aids to solve a given problem is nothing new and

cannot be attributed to Alexander, but Alexander views patterns as òa timeless way of buildingó (see

[Alexander79]) rather than merely offering factual descriptions on how to solve various design problems. In

EVALUATING SOFTWARE DESIGN PATTERNS ïï THEORY AND BACKGROUND a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 34 of 197

Danish, there is even a specific word to describe òBest Practicesó within various engineering areas, ståbi ,

meaning (an) assist, aid, or (a) stand by in form of some sort of manual describing optimal solutions to various

technical problems 5.

A pattern description can be an entry in a pattern language. As such, entries are co nsidered elements of a

language. It is therefore essential their repre sentation is easily understandable and recognisable so the

described pattern can be applied in other applicable contexts. A pattern language is comprised of a fixed

number of such pattern entries, each describing a well ñproven solution to a reoccurring pro blem within a

specific context inside a larger domain. Furthermore, a pattern language should describe its context in full, but

different languages can use the same (subñ) set of patterns, combined and collaborating in different ways and

perhaps in some order, depending on the context . Combined, the patterns can solve a more fundamental

problem that is not explicitly addressed by any individual pattern [Appleton00; Lea93]. A pattern language

describing the entire dom ain is said to be complete . Mathematically , to our knowledge, no pattern language has

ever been proven complete, which would also seem contradictory to the id ea of patterns being discovered since

based on practical experience.

Alexander constructs a patt ern language containing 253 pattern entries of varying granularity , from regional

patterns down to patterns pertainin g to some small part of a house 6. Alexander claims the entries form a

complete architectural pattern language for his domain [Alexander77; Lea93]. From Alexanderõs language,

smaller languages can be constructed using several of the contained patterns to describe subñcontexts. For

instance, t o construct a pattern language to describe a given house, some of these patterns must be used, for

example patterns describing light, transitions, colours, surfaces, etc . , while these and others would be required

to describe an entire region. The endñuser, i.e. the inhabitant, help decide which patterns to include i n the

language to construct the house [Lea93]. However, during several experiments using his pattern language,

Alexander and others realised that it did not really work as well as intended in practice; the pattern language

alone did not succeed in constructing coherent form because of too many unknowns, for example the order in

which to apply the patterns . Alexander therefore introduced morphogenetic sequences, or just sequences (see

[Alexander05b]) . A morphogeneti c sequence is a pattern language that adheres to a certain order of unfolding ,

i.e. the order in which patterns are applied one after another . A sequence causes a repeatable coherent order

to unfold , which also contains the patterns and therefore is well b ehaved as an environment [Alexander05b].

Alexanderõs, as of yet , final modification to pattern languages is generative codes [Alexander05a]. Generative

codes are also morphogenetic sequences, but include all information needed for practical implementation,

especially concerning human interaction, as well as practical , legal, and procedural details. Alexander states

that w ith out the use of generative codes, the practical work cannot be done successfully.

5
 It is not that uncommon to hear a Danish engineer turned developer pondering: òWhy is there not a ståbi for this problem?ó.

But there often is ð in form of a software design pattern.
6
 Alexanderõs patterns can be viewed online at http://www.patternlanguage.com/leveltwo/patterns.htm .

http://www.patternlanguage.com/leveltwo/patterns.htm

EVALUATING SOFTWARE DESIGN PATTERNS ïï THEORY AND BACKGROUND a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 35 of 197

3.2. Software Patterns
While Alexander describes patterns to supply solutions to problems related to his domain of designing and

constructing buildings and towns, patterns and pattern languages can be, and have been, applied elsewhere,

especially within the field of Computer Science.

Around 1987, Beck and Cunningham were among the first to apply the Alexanderõs ideas to computer science.

They constructed a pattern language containing five pattern entries describing how to design simple Graphical

User Interfaces (GUIs) in Smalltalk , targeted at no vice Smalltalk programmers [Beck87]. The patterns were not

only related to design, but also to Human Computer Interaction (H CI) in the sense that they focused on the

usability of the resulting design . The patterns had varying granularity and were hierarchical related , yielding an

order of application.

In 1991, Jim Coplien published a book containing a large collection of C++ idioms [Coplien91]. The book does not

explicitly use the term pattern , but it was published years before the patterns became popular within computer

science. However, t he idiom classification of design patterns from the taxonomy listed in table 2.3 seems quite

influenced by his work. In the early nineties, various people now considered pattern notables began collecting

and discussing software patterns , but s oftware patterns first became truly popular after the òDesign Patternsó

book by Gamma et al. was released in 1995. The four authors became known as the òGang of Fouró, and the

patterns presented in the book as the òGang of Fouró design patterns. The òDesign Patternsó book not only

describe twenty ñthree software design patterns describing communicating objects customised to solve a general

design problem in a particular context [Gamma95, p.3], but also discuss the overall OO concepts and themes the

patterns express (as explained in section 2.1.1 and 2.1.2). The òGang of Fouró patterns have long since become

famous and used extensively within the OO community . Many other books on patterns have since been

published, far too many to give a meaningful and com prehensive list, and there are conferences dedicated to

patterns held regularly , such as the Pattern Languages of Programs (PLoP) conferences. The òPOSAó books by

Buschmann et al. [Buschmann96; Schmidt00] are also widely used; Buschmann et al. formulated the design

pattern categories commonly used to this day, i.e. the architectural patterns, design patterns, and idioms

categories from table 2.3. Besides books and conferences, online pattern repositories such as [PPR] and

[Hillside] also provide much information regarding software patterns.

It is important to state that software patterns are not restricted to software desig n patterns , but it is hard to

estimate how influential Alexanderõs work has been on different kinds of pattern s and individual collections ,

whether intentionally or not . For example, many of Coplienõs C++ idioms are not really patterns, while Beck and

Cunningham directly references Alexander and claims that their five patterns form a complete pattern language

[Beck87]. Though not to the same extent as Beck and Cunningham, Gamma et al. clearly state that they build on

the work by Alexander [Gamma95, p.2 -4], and Buschmann et al. relate their work to Alexander as well

[Buschmann96, p.360,414; Schmidt00, p.505-526]. But one thing is saying so, another thing is doing so .

Alexanderõs work related to software (design) patterns is debated heartily with in the community , also with

respects to the òGang of Fouró patterns (see for example [PPR]) . On the other hand, pattern related concepts

originating in computer science have also emerged, such as The Rule of Three and Proto Patterns as explained in

EVALUATING SOFTWARE DESIGN PATTERNS ïï THEORY AND BACKGROUND a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 36 of 197

section 3.8.3 on page 49. Furthermore, a s discussed in section 3.6 , efforts are also being made to formalise

pattern descriptions and include patterns as language features or implement them as reusable components in

accordance with the principles in OO. This approach to design patterns deviates from the origina l concept

defined by Alexander in the sense that the human factor is less important in applying the patterns , but is muc h

more tangible and structured.

More recently, different kinds of software patterns have emerged outside the scope of òmereó OO design, such

as Analysis, HCI, Organisational, or Process Patterns, used to describe other or more specialised aspects of

software engineering [Appleton]. Analysis patterns as described by Fowler are still closely related to design

[Fowler97], and are therefore in cluded in our pattern taxonomy, while HCI patterns seem quite well suited to

expand on Alexanderõs ideas in different ways than OO design has. This is because several verbose, but

exactingly formulated, HCI methodologies already exist, based on empirically proven design guidelines, such as

UserñCentred Design (UCD) in which the endñuser must participate wholeheartedly in the design of the solution

[Borchers99]. This is reminiscent of Alexande r letting the end ñuser participate in the design process. HCI is very

much based on practical experiences, and because of characteristic similarities with patterns , HCI

methodologies could be expressed using pattern descriptions , especially since the metho dologies already have a

written form.

Still, software design patterns related to OO are very likely the most used kind of software patterns. People

within the software community neither accept the usefulness of individual patterns or collections, nor the need

for such a thing as software design patterns at all. OO has always acknowledged the need for meticulous analysis

(OOA) and design (OOD), but prior to design patterns, descriptions of design problems where mostly of a rather

abstract nature describing from scratch how to identify the individual parts of the system, their relationships,

and collaborations. In our view, a textbook example of this is the otherwise good book òDesigning Objectñ

Oriented Softwareó by WirfsñBrock et al. from 1990 [WirfsBrock90]. With patterns, problems of varying

granularities have already been solved and described, giving the designer a new set of òbroaderó tools to use in

the analysis and design phase. The abstraction need no longer be just focused at the individual class and object

level, but also at a higher level describing functionality, relations, and coherency traditional OO constructs

cannot. The principles are thus separated from the implementation. We think this is a key reason behind the

popularity of software design patterns.

3.3. Pattern Qualities
A pattern entry must ideally possess the set of properties listed in table 3.1 to ensure the quality of the pattern ,

namely Abstraction, Composibilit y, Encapsulation, Equilibrium, Generativity, and Openness [Appleton00]. Many

of these properties have similar meaning to desirable constructs in OO, which could explain why software

patterns first became popular within this domain. As an example, consider a class. A class is an abstraction with

encapsulated responsibilities representing some equilibrium . It can be used as a component by other classes and

is normally generative in its usage. It can be implemented in different languages or may even be parameterised

with other types (openness) [Lea93].

EVALUATING SOFTWARE DESIGN PATTERNS ïï THEORY AND BACKGROUND a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 37 of 197

Lea even writes that patterns may be viewed as extending the definitional features of classes, and that classes

and patterns have two analogous aspects [Lea93]:

I. The external, problem ñspace view : descriptions of properties, responsibilities, capabilities, and

supported services as seen by the external context; and

II. The internal, solution ñspace view : static and dynamic descriptions, constraints, and contra cts among

components known only with respect to a possibly incomplete external view (interface).

The need for these qualities implies that there is no guarantee that a given problem can be solved using a

pattern . Not every solution can be captured in a pa ttern , and not everything described by a pattern entry can be

considered a pattern [Hohmann98]. Accordingly, a class will only express these properties if well designed.

Table 3.1 ñ Pattern qualities

Name

Description

Computer Science

Abstraction A pattern represents a general abstraction of
knowledge and experience within a given
domain [Lea93]. The use of natural
language, diagrams, illustrations, etc. , is
required.

Objects are programmatic abstractions of
functionality, real ñworld or otherwise. A pattern
abstraction is a higherñlevel abstraction
compared to what can be described by
programming language constructs alone. The use
of programming lan guage in examples augments
the pattern description, but the examples cannot
standñalone.

Composibility Patterns of different granularity are
hierarchically related (in a pattern system or
language), indicating a rough application
order to be adhered to wh en the patterns
are unfolded. Patterns at a given level of
abstraction and granularity may lead to, or
be composed with, other patterns
[Alexander77; Appleton00; Lea93].

Objects share similar traits, and can be composed
to achieve complex functionality. For example, a
recurring theme in [Gamma95] is to prefer
delegation to inheritance, which allows for
dynamic composibility .

Encapsulation A pattern must encapsulate an independent,
wellñdefined real ñworld problem and
solution within a given domain [Alexander77;
Lea93].

An object uses encapsulation to e nsure that both
data and the methods that operate on the data
are correlated. Combined with information
hiding, this ensures that the responsibilities of
the objects are well ñdefined. However, an
object need not represent a real ñworld problem.

Equilibriu m Indicates a balance between forces and
constraints that minimises the conflicts in
solution space identified by the pattern, and
may be based on invariants and/or
heuristics. Equilibrium provides a rationale
for each individual step in the pattern when
applied [Alexander77; Appleton00; Lea93].

The responsibilities of an object represent the
tradeñoffs made when designing it , and the
functional ity implemented by the object
represents the equilibrium .

Generativity When a pattern is applied, as described by
its description, it provides the solution to a
given context thereby generating a new
resulting context, which in turn can be used
to apply o ther patterns, and so forth,
leading to the overall generation of the
solution to the domain in question. More

Classes can be viewed as being generative as
well; they support parameterised instance
construction and perhaps parameterised types
(e.g. generics and templates). Objects in
prototype ñbased languages may also support
parameterised instance constructi on.

EVALUATING SOFTWARE DESIGN PATTERNS ïï THEORY AND BACKGROUND a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 38 of 197

Table 3.1 ñ Pattern qualities

Name

Description

Computer Science

than one pattern may be applicable to a
given context [Alexander77; Lea93].

Openness Each pattern should be open for extension
and parameterisation by other patterns, to
work together to solve a larger problem.
Realisation of the pattern should be possible
using any number of implementations, alone
or in conjunction with oth er patterns
[Alexander77; Lea93]. Applying a pattern is
the process that generates a solution, but it
may generate variant solutions [Appleton00].
In theory, a pattern entry should be
implemented for each usage.

Some languages contain builtñin support for
several patterns, and libraries are commonly used
to supply well ñproven pattern implementations
(see section 2.6.2 on page 29). Combined with
parameterised types (e.g. generics or templates)
even built ñin classes may be considered open, for

example java.util.Iterator<E> in Java.

If a pattern exhibits these qualities, the source code im plementation is likely to reflect them as well.

Example 3.1 ïï In example 2.4 on page 27, we claimed that the Abstract Factory , Factory Method, and

Singleton patterns could aid in the design of the notification mechanism from example 2.1. To add value to the

design the patterns must express the desired qualities. The Abstract Factory pattern is an abstraction of

knowledge about creating objects without explicitly knowing their type ; its description contains text,

illustrations, as well as program code (Abstraction). The pattern functionality is required in many different type s

of flexible realñworld systems, and t he pattern encapsulates this task by providing a description o f the problem

as well as a proven solution to it (Encapsulation). The description explains the trade ñoffs in using it , for

example that the pattern promotes consistency, but also that it can be hard to add new types of object to a

given factory (Equilibrium). The Abstract Factory can defer the actual creation of new objects elsewhere,

typically to Factory Method or Prototype [Gamma95, p.1 17] pattern implementations (Composibility and

Openness); as a variant, it could also choose to implement the functionality by it self, for example using

reflection in Java (Openness). Finally, Abstract Factory implementation s are often suitable as candidates for the

Singleton pattern (Generativity) ƴ

3.4. Pattern Forces
A pattern must balance opposing forces within its context t o reach a balance that implicitly will be present in

the pattern and in its application [Appleton00]. The described solution must bring the identified forces into

harmony, or the pattern is not warranted . This implies that a pattern may represent trade ñoffs between various

forces.

The type of forces depends entirely on the domain and context, but forces can gene rally be thought of as goals

and constraints. In computer science, the notion of force generalises the kinds of criteria used to justify designs

and implementations [Lea00, i.12] . According to Buschmann et al., the most important n onñfunctional forces

regarding OO development are Changeability, Interoperability, Efficiency, Reliability, Testability, and

Reusability [Buschmann96, p.404-410], and Lea lists a set of similar forces, such as Portability, Extensibility,

EVALUATING SOFTWARE DESIGN PATTERNS ïï THEORY AND BACKGROUND a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 39 of 197

Fairness, Maintainability [Lea00, i.12] , etc. More explicit functional forces are closely tied to the domain

[Appleton00; Lea00, i.12 -13]. A functional force can be visible to the users of the syste m by means of a

particular function, or it may represent aspects of the implementation, such as the algorithm used to compute

the function [Buschmann96, p.389].

Design patterns, e.g. the òGang of Fouró patterns, primarily express nonñfunctional forces , as example 3.2

below also illustrates . As patterns are used to implement system functionality, the forces balanced in the

pattern may influence the syst em unless fully encapsulated, intentionally or otherwise. Similar, the traits of the

system will dictate the type of applicable patterns.

Example 3.2 ïï A set of nonñfunctional forces relevant for the not ification mechanism from example 2.1 on

page 21 could be Reusability, Changeability, and Extensibility related to the various design issues contemplated

in example 2.2. If designed as an openñsource library or API, Reusability becomes an important factor , as well

as Changeability and Extensibility to manage or add new means of deliveries or new functionality. On the other

hand, Efficiency and Fairness is not that important as long as a delivery is made eventually . As means of

deliveries, we considered email and SMS deliveries in form of the EmailDelivery and SMSDelivery

implementations . They are storeñandñforward services, and once a message has been delivered successfully to

the gateway, nothing more can be done from the application õs point of view . However, other types of deliveries

could require scheduling and processing guarantees, for example the order of delivery . A delivery writing to an

event or audit table in a database is one example. Patterns used in the design of the notification mech anism

should match these forces and preferably enforce them , for example using the Abstract Factory [Gamma95,

p.87] and Factory Method [Gamma95, p. 107] patterns as described in example 2.4 to ensure Changeability and

Extensibility of associated Delivery and Formatter types.

Functional forces will be closely related to the core functionality of the notification mechanism, which is a

library for delivery of messages to subscriptions using various means of deliveries. This indicates that there will

be an overlap between functional and non ñfunctional forces in this case, e.g. Fairness and Extensibility . A more

explicit functional force could be an algorithm used to correlate and concatenate related Notification

objects to be delivered in a single delivery ƴ

An example of an unresolved force relevant to the òGang of Fouró patterns is Multithreaded Safety as suggested

by Lea [Lea00, i.12] . In general, concurrency is not an issue discussed much in the òDesign Patternsó book

[Gamma95]. This does by no means imply that the òGang of Fouró patterns are faulty, but that care must be

taken when applying them in modern concurrent systems. For example, what is the result in case of concurrent

modification to the underlying representation used by the Iterator pattern (robustness), or how do we ensure

that only a single instance of a Singleton type is created in a concurrent environment ?

3.5. Pattern Elements
Alexanderõs description of patterns contain s certain vital elements to ensure that it conveys the relationship

between the co ntext and forces, and implicitly the qualities as well [Appleton00]. A pattern format , or just

EVALUATING SOFTWARE DESIGN PATTERNS ïï THEORY AND BACKGROUND a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 40 of 197

form, is a template dictating the elements and structure of pattern descriptions. To be able to reuse a pattern

in a design, the pattern description must contain the decisions, alternatives, and trade ñoffs (forces) that led to

it [Gamma95, p.6]. A wellñwritten pattern must also express the desired qualities [Lea93], and is more than a

simple recipe as Fowler explains [Fowler06]:

Recipes tend to be more particular, usually tied to a particular programming language and

platform. Even when patterns are tied to a platform, they try to describe more general

concepts.

Many different forma ts exist, some just slight variations of others, but no official standard is acknowledged

[Lea00]. However, several deñfacto standards exist. Alexanderõs format, Alexandrian Form, is used to describe

architectural patterns and it contains the elements Name, Example, Context, Problem, and Solution [Lea93]. In

computer science, the òGang of Fouró (GoF) and Canonical Forms are widely used [Lea00; Appleton], but many

other exist (for a list, see [Lea00; PPR]). For instance, the òPOSAó patterns are described using a variant of the

Canonical Form [Buschmann96, p.20 -21], while the òGang of Fouró patterns are described using the òGang of

Fouró form, surprisingly enough. All forms in some way seem to present the elements required by Alexandrian

Form, but not necessarily in, or as, their own sections. Some formats make these elements explicit, while others

do not. For example, the form used by Fowler to describe his analysis patterns in [Fowler97; Fowler03] has just

three named elements, where only the Name element corresponds to a pattern element as defined by

Alexander. Hence, different pattern formats describe di fferent elements, and elements differently, but

Appleton states that the elements from the Canonical Form should be clearly recognisable upon reading a

pattern description . The elements are Name, Problem, Context, Forces, Solution, Examples, Resulting Cont ext,

Rationale, Related Patterns, and Known Uses [Appleton00] . The naming of patterns is especially interesting . By

giving a pattern a meaningful and concise name, designers, developers, and others share a common vocabulary

(easy naming of solutions to common problems) that can be utilised in the development process , and which

extends beyond other more traditional methods [Gamma95, p.6 ; Fowler06].

The pattern description will be affected by th e domain targeted by the pattern. The òGang of Fouró design

patterns operate in OO environments, and OO concepts and themes utilised by Gamma et al. will be reflected in

the patterns and their application, i.e. implementation . The concepts and themes thus become important in

order to understand the patterns as a whole. However, the format used to describe the patterns can also affect

the pattern , because not all formats are appropriate for a given domain [Vlissides97, i.7].

3.5.1. άGang of CƻǳǊέ Format

The format used by Gamma et al. in the òDesign Patternsó book has since been named the òGang of Fouró

format, or GoF form. The Canonical Form builds on the format , and shares many elements; it can be viewed as a

generalised version of the òGang of Fouró format. The format is commonly used, and often used as a base for

variant forms [Fowler06]. The format is highly structured compared to the Alexandrian form of writing, which is

narrative and almost lyrical [Vlissides97, i.7]. Table 3.2 explains the general purpose of the different elements .

It also relates them to the most relevant qualities from table 3.1 as we see it.

EVALUATING SOFTWARE DESIGN PATTERNS ïï THEORY AND BACKGROUND a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 41 of 197

Table 3.2 ñ òGang of Fouró pattern format (modified from [Gamma95, p.6 -7])

Element

Description

Qualities

Name A concise pattern name that conveys the pat tern essence. Abstraction

Classification The classification of the pattern according to the two
dimensions Scope (Class and/or Object) and Purpose
(Creational, Structural, or Behavioural).

Abstraction , Composibility ,
Generativity

Intent A short statement that answers the following questions: What
does the design pattern do? What is its rationale and intent?
What particular design issue or problem does it address?

Abstraction , Equilibrium

Also Known As Alternative names, if any. Abstraction

Motivation An example that illustrates a design problem and how the
class and object structures in the pattern solve the problem.

Abstraction

Applicability In which situations can the pattern be applied? What are
examples of poor designs that the pattern can address? How
can you recognise these situations?

Abstraction, Composibility ,
Generativity

Structure A graphical representation of the classes and objects in the
pattern.

Abstraction , Encapsulation

Participants The classes and/or objects participating in the des ign pattern
and their responsibilities.

Abstraction, Encapsulation

Collaborations How do the participants collaborate to carry out their
responsibilities?

Abstraction, Encapsulation

Consequences How does the pattern support its objectives? What are the
t radeñoffs and results of using the pattern? What aspect of
the system structure does it let you vary independently?

Equilibrium, Openness

Implementation

What pitfalls, hints, or techniques should you be aware of
when implementing the pattern? Are there language specific
issues?

Composibility, Equilibrium,
Generativity, Openness

Sample Code

Code fragments that illustrate how you might implement the
pattern.

Generativity, Openness

Known Uses Examples from real systems. Composibility, Generativity,
Openness

Related Patterns Related patterns, if any. Composibility, Generativity,
Openness

The elements listed in light grey are the elements most closely related to pattern implementation , i.e.

Implementation and Sample Code. As described in chapter 5, the evaluation pays special attention to these

elements. The format as described in the òDesign Patternsó book explicitly mentions that the Sample Code

element will supply source code in C++ or Smalltalk [Gamma95, p.7] , because the òGang of Fouró patterns are

illustrated in these languages. Similar, the Implementation element is closely related to these languages as well,

or at least the features of the languages. The use of these languages in the pattern description may influence

the pattern application using other languages, e.g. Java 6, because they tie the patterns to specific languages .

This is also noted by Gamma et al. [Gamma95, p.4]. As patterns are discovered in exist ing source code (see

section 3.8.1 on page 47), the Implementation and/or Sample Code elements may very well represent extracts

from real systems written in the same programming lan guage. Both t he problem and solution may thus have

originated in , or because of, the language in question.

EVALUATING SOFTWARE DESIGN PATTERNS ïï THEORY AND BACKGROUND a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 42 of 197

3.6. Pattern Formalism
The lack of a formalised concept of a design pattern has long been a vigorously debated issue within the pattern

community (see fo r example [Eden98, p.3; Eden02, p.380] and much of [Hillside; PPR]). It goes to the very core

of understanding, or agreeing on, what software design patterns are. Formalism is close ly related to tool support

for pattern mining, understanding, and application. The efforts to formalise design patterns intentionally oppose

Alexanderõs ideas of patterns languages and patterns expressing the QWAN in favour of more analytic and

structural approaches [Eden98, p.3]. Practically all software design pattern formats are already much more

structured compared to the Alexandrian format. Stated bluntly, Eden says most followers of Alexanderõs ideas

treat software design patterns a s sacred cows, no less, which cannot, and should not, be formalised, while

followers of the efforts to bring structure, formalism, and tools to the pattern community are rational [Eden98,

p.3]. In this feud, we take the middle ground. Fo rmalism can be a valuable tool to aid the practical

implementation of design patterns, i.e. componentization , tooling, and ease of understanding, while

remembering that software design patterns ideally express more than program code, i.e. part of a vocabul ary,

highly adaptable, used for teaching and u nderstanding of concepts, etc.

While formal specifications may clarify pattern functionality, we fail to see how it can describe the human

aspect in patterns and in their application, expressed in, and as a co mbination of, various pattern elements.

Strict formalisation of patterns will deemphasise the human aspect greatly, which goes against Alexanderõs

original ideas. Vlissides agrees and writes [Vlissides97, i.4]:

In short, patterns are primarily food for the brain, not fodder for a tool. There may yet be

latent benefit in methodological or automated support, but I'm convinced it'll be icing on the

cake, not the cake itself or even a layer thereof.

Even more so, as described in section 3.5 , different pattern formats describe different elements and elements

differently. If formalism is to succeed, we believe it will be at the expense of variety of pattern formats. This

could pose a problem, as a single pattern format does not fit all [Vlissides97, i.7].

Baroni et al. discuss numerous OO and pattern formalisation methods in [Baroni03], and conclude that all the

reviewed mechanisms have drawbacks, and cannot capture all the concepts related to patterns [Baroni03,

p.11,53]. In light of the reviews, Baroni et al. also conclude that certain pattern elements in the òGang of Fouró

format are easier used in the pattern formalisation pr ocess, namely Participants, Collaborations, Structure, and

in part Implementation [Baroni03, p.8,53]. As explained in table 3.2 on page 41, the first thr ee elements relate

to the actual design and relationships of the classes and objects used in the pattern. Common relations like

inheritance, creation, and forwarding are labelled as simple [Baroni03, p.11] and are clearly encompassed by

the concepts and themes described by Gamma et al. The Implementation element primarily express

programming language constructs, which are highly structured. The four elements all favour structured over

unstructured information. In our view, this is a clear indication that fo rmalisation is closer related to

fundamental OO concepts as opposed to pattern concepts, such as qualities and forces that cannot easily be

described. The human factor is missing. Pattern concepts are what make patterns powerful abstractions and

EVALUATING SOFTWARE DESIGN PATTERNS ïï THEORY AND BACKGROUND a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 43 of 197

tools, not just the OO mechanisms used to implement them. Formalism may be able to resolve some

ambiguities, but literal descriptions are still warranted to describe the human aspect.

3.7. Pattern Collections
A pattern cannot describe a complete OO system by itself , but targets a specific problem within the system .

Instead, patterns are often interrelated and rely on the behaviour of other patterns to achieve their own goals ,

especially so for patterns targeting the same domain or even context . The relations between patte rns are

important because applying a specific pattern may generate t he need to apply other patterns; a relation can

also indicate different possible solutions in form of other patterns. In the òGang of Fouró format , as described in

section 3.5.1 , the Related Patterns element expresses such pattern relationships. Based on how coherent a

collection of patterns are, including how the y individual ly are described, patterns can be correlated in different

types of collections as explained in table 3.3 below.

Table 3.3 ñ Pattern collections

Name

Description

Catalogue A pattern catalogue is a collection of loosely and/ or informally related patterns . The contained
patterns are often divided into broad categories and are not necessarily written using uniform
pattern entries or even format [Buschmann96, p.23] .

System A pattern system is a cohesive set of related patterns described in a consistent format , working
together to support construction and evolution of whole architectures [Buschmann96, p.361].

Language A pattern language can be viewed as a pattern system covering a complete domain with rules
and guidelines, whic h explain how and when to apply its patterns to solve a problem that is
larger than any individual pattern can solve [Appleton00].

Pattern catalogues can evolve int o pattern systems, and d ue to the obvious benefits of systems over catalogues,

catalogues are rarely used because the knowledge they represent may be too unstructured to be truly useful in

the design process. Gamma et al. identify the òGang of Fouró patter n collection as a òcatalogueó [Gamma95,

p.8], but according to the Buschmann et al. definition, they constitute a pattern system. This is because the

òDesign Patternsó book predates the òPOSAó books. The òGang of Fouró design patterns all target the same

domain; they are interrelated in intricate ways; many depend on other patterns to supply functionality; and they

are all written using the same format.

Though pattern systems share many desirable traits with pattern language s7, they can at most be considered

incomplete pattern languages [Buschmann96, p.360] . Pattern systems lack the robustness and wholeness of

pattern languages. Because of narrower focus, most are described using only a subñset of the pattern elements

in the Canonical Form, but may eventually evolve into a pattern language. Pattern languages are not created all

at once, but evolve from pattern systems. In practice, however, the difference can be very hard to detect

7
 The first òPOSAó book uses the term pattern systems as almost a synonym for pattern languages as described by Alexander

[Buschmann96, p.360-362], while the second book explicitly differentiates between systems and languages [Schmidt00,
p.524-526].

EVALUATING SOFTWARE DESIGN PATTERNS ïï THEORY AND BACKGROUND a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 44 of 197

[Appleton00]. Dominus, for example, states that systems and even catalogues are what many people mistake for

pattern languages [Dominus02].

A pattern language can be thought of as a òsuper patternó that can be applied to solve a problem in its entirety.

The contained patterns solve subñproblems in a divideñandñconquer fashion [Appleton00; Buschmann96,

p.403]. Very few authors claim to have, or have ind eed, constructed a complete pattern language. Alexander

claims his 253ñentry pattern language is complete for his domain, while Beck and Cunningham were among the

first to create a pattern language within the field of computer science, containing only five pattern entries

[Beck87]. According to Buschmann et al., o ther small languages from computer science include Crossing Chasms

for connecting OO systems to relational database, and CHECKS by Cunningham for information integrity

[Buschmann96, p.360] ; in [Schmidt00, p.510 -524], Buschmann et al. themselves claim to present a pattern

language for middleware and applications in relation to concurrency and networking . By Alexanderõs definition,

the general case is that pattern languages are very rare in any field . In computer science, c atalogues and

systems are much more common because of their lenient definitions . As we understand it , this is also a key issue

pointed out by several critics of software pattern s (see for example [Dominus02]): pattern languages are not

used in computer science, merely the patterns themselves in a loosely organised fashion. Regardless, whether or

not such languages indeed are pattern languages is open for debate, because there is no math ematical way to

determine it.

3.7.1. άDŀƴƎ ƻŦ CƻǳǊέ tŀǘǘŜǊƴ {ȅǎǘŜƳ

In 1995, Gamma et al. published the òDesign Patternsó book [Gamma95], describing twenty ñthree individual

design patterns contained in a pattern system pertaining to OO, which popularised the use of patterns in

computer science [Appleton00]. As explained in section 2.5.1.3 , the òGang of Fouró design patterns describe

concepts and structures beyond individual obje cts and classes up to the granularity level of refinement of OO

subñsystems, customised to solve a general design problem in a particular context [Gamma95, p.3]. Below,

table 3.4 lists the twenty ñthree òGang of Fouró design patterns from [Gamma95], including their classifications

and relationships.

Gamma et al. classif y the òGang of Fouró patterns in two dimensions according to Scope (Class and/or Object)

and Purpose (Creational, Structural, or Behavioural) [Gamma95, p.10]. The Scope criterion identifies whether

the pattern applies primarily to classes or objects. Class patterns deal with relationships between classes and

their subñclasses. Object patterns are more dynamic, and deal with objects and their relationships, but almost

all the patterns uses inheritance, and thus classes to some extent. Purpose is a problem ñbased criterion that

classifies the òGang of Fouró patterns according to what they do. Creational patterns focus on the instantiation

process of objects [Gamma95, p.81]; Structural patterns focus on how classes and objects are composed to form

larger structures [Gamma95, p.137]; and finally Behavioural patterns focus on algorithms and assignment of

responsibilities between objects [Gamma95, p.221]. Other types of problem ñbased classifications exist, for

instance Concurrency patterns (see for example [Schmidt00]).

EVALUATING SOFTWARE DESIGN PATTERNS ïï THEORY AND BACKGROUND a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 45 of 197

Table 3.4 ñ òGang of Fouró pattern system

Name

Description

Scope

Related Patterns

Creational Patterns

Abstract
Factory

Provide an interface for creating families of
related or dependent objects without specifying
their concrete classes [Gamma95, p.87].

Object creates Bridge

 alternative to Builder

 collaborates with or alternative
to Facade

 uses Factory Method

 uses or alternative to Protot ype

 is a Singleton

Builder Separate the construction of a complex object
from its representation so that the same
construction process can create different
representations [Gamma95, p.97].

Object alternative to Abstract Factory

 creates Bridge

 creates Composite

 is a Singleton

Factory
Method

Define an interface for creating an object, but
let subñclasses decide which class to instantiate.
Factory Method lets a class defer instantiation to
subñclasses [Gamma95, p.107].

Class used by Abstract Factory

 used by Iterator

 alternative to Prototype

 used by Template Method

Prototype Specify the kinds of objects to create using a
prototypical instance, and create new objects by
copying this protot ype [Gamma95, p.117].

Object used by or alternative to
Abstract Factory

 implemented by Command

 collaborates with Decorator

 alternative to Factory Method

 is a Singleton

 collaborates with Template
Method

Singleton Ensure a class only has one instance, and provide
a global point of access to it [Gamma95, p.127].

Object implemented by Abstract Factory

 implemented by Builder

 implemented by Facade

 implemented by Mediator

 implemented by Proto type

 implemented by Observer

 implemented by State

Structural Patterns

Adapter Convert the interface of a class into another
interface clients expect. Adapter lets classes
work together that could not otherwise because
of incompatible interfaces [Gamma95, p.139].

Class,
Object

 alternative to Bridge

 alternative to Decorator

 alternative to Proxy

Bridge Decouple an abstraction from its implementation
so that the two can vary independently
[Gamma95, p.151].

Object created by Abstract Factory

 alternative to Adapter

 created by Builder

Composite Compose objects into tree structures to
represent part ñwhole hierarchies. Composite
lets clients treat individual objects and
compositions of obje cts uniformly [Gamma95,
p.163].

Object created by Builder

 collaborates with Chain of
Responsibility

 collaborates with Decorator

 collaborates with Flyweight

 used by Interpreter

 uses or collaborates with Iterator

 collaborates with Visitor

Decorator Attach additional responsibilities to an object
dynamically. Decorators provide a flexible

Object alternative to Adapt er

 collaborates with Prototype

EVALUATING SOFTWARE DESIGN PATTERNS ïï THEORY AND BACKGROUND a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 46 of 197

Table 3.4 ñ òGang of Fouró pattern system

Name

Description

Scope

Related Patterns

alternative to sub ñclassing for extending
functionality [Gamma95, p.175] .

 collaborates with Composite

 alternative to Strategy

Facade Provide a unified interface to a set of interfaces
in a subñsystem. Facade defines a higherñlevel
interface that makes the sub ñsystem easier to
use [Gamma95, p.185].

Object collaborates or alternative to
Abstract Factory

 alternative to Mediator

 is a Singleton

Flyweight Use sharing to support large numbers of fine ñ
grained objects efficiently [Gamma95, p.195].

Object collaborates with Composite

 used by Interpreter

 implemented or used by State

 implemented by Strategy

Proxy Provide a surrogate placeholder for another
object to control access to it [Gamma95, p.207].

Object alternative to Adapter

 alternative to Decorator

Behavioural Patterns

Chain of
Responsibility

Avoid coupling the sender of a request to its
receiver by giving more than one object a chance
to handle the request. Chain the receiving
objects and pass the request along the chain
until an object handles it [Gamma95, p.223].

Object collaborates with Composite

Command Encapsulate a request as an object, thereby
letting you parameterise clients with different
requests, queue or log requests, and support
undoable operations [Gamma95, p.233].

Object is a Composite

 uses Memento

 is a Prototype

Interpreter Given a language, define a representation for its
grammar along with an interprete r that uses the
representation to interpret sentences in the
language [Gamma95, p.243].

Class uses Composite

 uses Flyweight

 uses Iterator

 uses Visitor

Iterator Provide a way to access the elements of an
aggregate object sequentially without exposing
its underlying representation [Gamma95, p.257].

Object used by or collaborates with
Composite

 uses Factory Method

 used by Interpreter

 uses or alternative to Memento

Mediator Define an obje ct that encapsulates how a set of
objects interact. Mediator promotes loos e
coupling by keeping objects from referring to
each other explicitly, and it lets you vary their
interaction independently [Gamma95, p.273].

Object alternative to Facade

 collaborates with Observer

 is a Singleton

Memento Without violating encapsulation, capture and
externalise an objects internal state so that the
object can be restored to this s tate later
[Gamma95, p.283].

Object used by Command

 used by or alternative to Iterator

Observer Define a oneñtoñmany dependency between
objects so that when one object changes state,
all dependants are notified and updated
automatically [Gamma95, p.293].

Object collaborates with Mediator

 is a Singleton

State Allow an object to alter its behaviour when its
internal state changes. The object will appear to
change its class [Gamma95, p.305].

Object is a or uses Flyweight

 is a Singleton

Strategy Define a family of algorithms, encapsulate each
one, and make them interchangeable. Strategy

Object alternative to Decorator

EVALUATING SOFTWARE DESIGN PATTERNS ïï THEORY AND BACKGROUND a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 47 of 197

Table 3.4 ñ òGang of Fouró pattern system

Name

Description

Scope

Related Patterns

lets the algorithm vary independently from
clients that use it [Gamma95, p.315].

 is a Flyweight

 alternative to Template Method

Template
Method

Define the skeleton of an algorithm in an
operation, deferring some steps to sub ñclasses.
Template Method lets subñclasses redefine
certain steps of an algorithm wi thout changing
the algorithmõs structure [Gamma95, p.325].

Class uses Factory Method

 collaborates with Prototype

 alternative to Strategy

Visitor Represent an operation to be performed on the
elements of an object struct ure. Visitor lets you
define a new operation without changing the
classes of the elements on which it operates
[Gamma95, p.331].

Object collaborates with Composite

 used by Interpreter

The legends used to describe the pattern relationships indicate the type of relationship. We have deciphered the

relationships by examining all the pattern descriptions, especially the Related Patterns element , as well as

[Gamma95, f.1 ñ1,p.9-13]. The relationships do not indicate that the patterns must be used together as

illustrated, merely that they can be. They are by no means a formal specification of the òGang of Fouró

relationships, but help provide an overview in the practical application . The Uses and Used by legends typically

indicates a strong relationship, often a òhasñaó relationship corresponding to composition and/or delegation in

compliance with the general òGang of Fouró themes as described in section 2.1.2 on page 18. The Is a and

Implemented by legends indicates an òisñaó relationship, corresponding to classñbased inheritance or interface

implementation . The Collaborates with legend indicates some form of collaboration between the patterns, for

example that both can be used by in conjunction by other patterns; the term is broadly defined and could refer

to a stronger relationship such as Used by depending on the actual application. The Creates and Created by

legends indicates a special form of creational collaboration. Finally, the Alternative to legend indicates that

alternative, but not identical, solutions to a problem exist; however, applying one pattern over an alternative

one may generate considerable changes to the design.

3.8. Pattern Evolution
Individual patterns evolve over time , but so too can pattern catalogues, systems, and languages . This is of

pivotal importance because the patterns must reflect their environment, which according to Alexander is

constantly evolving.

3.8.1. Mining

Mining is the nonñtrivial art of discovering new patterns within systems in a given domain and describing them.

This is a term originating in computer science , but Alexander present similar ideas . The general idea is that true

patterns are discovered, not invented, due to the duality in the definition of a pattern as explained in section

3.1 . Coplien states that patterns observed in an existing system may not be desirable. Some patterns are nonñ

generative, descr iptive, and passive, i.e. recipe ñlike, which is not good and do not lead to desirable results

[Coplien, i.3]. Only good patterns should be mined for actual (re ñ) use, which can then help generate new

EVALUATING SOFTWARE DESIGN PATTERNS ïï THEORY AND BACKGROUND a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 48 of 197

systems that will contain the patter n traits . Such patterns are generative, prescriptive, and active ; they are

more than simple recipes.

Since patterns represents common bestñpractices to reoccurring solutions, the pattern naturally has to be found

in more than one design. The Rule of Three simply states that any pattern must have been found in at least

three real ñworld systems for it to be considered a valid pattern [PPR, p.RuleOfThree]. Gamma et al. state that

none of the òGang of Fouró design patterns represents new or unproved designs, but that they are elements of

some successful OO system, or part of the folklore of the OO community [Gamma95, p.2] .

3.8.2. AntiτPatterns

AntiñPatterns focus on existing software failures in an attempt to understand, prevent, and recover from them

[McCormick01]. The term and its meaning were originally coined by Brown et al. as a counterpart to design

patterns [Brown98]. Since they represent specific pitfalls to avoid during software development , they can

naturally be found within any imaginable area, for instance management, organisation, design, programming,

etc. Anti ñPatterns are described using structured formats and each description is based on existing (bad)

solutions [McCormick01]. Antiñpatterns are sometimes referred to as code smells.

Design patterns are often the òcureó for antiñpatterns. They describe a solution that will remedy the problems

inherent in the antiñpattern. Pattern m ining is therefore c losely related to anti ñpatterns : new patterns may

produce commonly accepted design patterns that can be used to avoid common pitfalls , but on the other hand,

overly or wrong use of design patterns may be an anti ñpattern by itself. Rarely, design patterns can thus be the

very òsymptomó described by an antiñpattern . The optimal solution is to evolve from designs containing anti ñ

patterns ð well, preferably containing none ð to designs utilising wellñdescribed design patterns without

constructing new anti ñpatte rns in the process.

Example 3.3 ïï The Layers pattern [Buschmann96, p.31] discussed in example 2.3 on page 25 is a design

pattern offering a solution to pitfalls described by the Big Ball of Mud [PPR, p. BigBallOfMud] antiñpattern

[Buschmann96, p.29] . It of fers structure instead of chaos. On the other hand, the Singletonitis [Vieiro06] anti ñ

pattern describes overly or wrong use of the Singleton [Gamma95, p.127] pattern ; it exists because the Singleton

pattern exist , and designers using the Singleton pattern should be aware of this. Example 2.4 on page 27

considered applying the Singleton pattern in the design of the described notification mechanism , specifically to

ensure unique Delivery and Formatter factories. Forcing singleton objects into libraries may cause

unforeseen runtime consequences, such as class loading issues in Java, but it may also cause undesirable

behaviour, such as severely restrict ing how clients can use and combine factories . The latte r may be fine, but

the consequences must naturally be thought through . In any case, the evolution of the notification mechanism

could even require refactoring causing less frequent usage of the Singleton pattern ƴ

There is no precise checklist specifying what constitutes an antiñpattern, but [PPR, p.AntiPatternsCatalog] lists

many commonly accepted antiñpatterns. Nevertheless, f unctionality some people regard as antiñpatterns,

others do not; eve n more so, functionality some regard as patterns, others regard as antiñpatterns! A simple

EVALUATING SOFTWARE DESIGN PATTERNS ïï THEORY AND BACKGROUND a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 49 of 197

example is invoking an overridden method in a super class from inside the overriding method in the subñclass,

i.e. a n extra tight coupling between a super and sub ñclass that must be enforced by the developer . In Java,

finalizer chaining is an example of this: when overriding java.lang.Object.finalize() , the developer

must ensure that the finalize () method in the super ñclass is invoked [Bloch01, p. 22-23]. Fowler identifies

this as the Call Super [Fowler05] antiñpattern because there is no way to guarantee that the sub ñclass will

invoke the overridden method in the super class (as opposed to method combination , for example in CLOS

[DeMichiel87]). However, according to Grand [Grand99, p.179] , Beck identifies this as a des ign pattern called

Extend Super, though with a slightly different context. As a practical example, Livshits has identifi ed misuse of

the Extend Super pattern in the Eclipse project , which corresponds to the situation described by the Call Super

antiñpattern [Livshits05, p.1 -2].

3.8.3. Proto Patterns

Ideally, a newly discovered and initially described patter n is called a proto pattern until its qualities and

elements have been validated and acknowledged by others, if at all, for example at a PLoP conference. This is

also a term originating in computer science. A proto pattern will be investigated to see if it is meaningful within

its domain; if it describe s the forces at play; if it has the required elements and qualities ; if the Rule of Three is

adhered to; etc. Even if a proto pattern is accepted as a valid pattern, there is no guarantee that it will ever be

commonly used. Many patterns are left unused . This does not necessarily mean that they are not useful, though

as a concept design patterns are often misused to denote anything that has the slightest touch of

recognisability, but perhaps rather that their context and problem is too specific to be truly valuable. On the

other hand, m any soñcalled patterns have been published violating the needed elements and qualities, not to

mention the Rule of Three, or repr esenting a solution in which no forces are at pla y. They could also be passive

as described by Coplien, not gener ating quality solutions .

Once a proto pattern has been established to represent a valid pattern, it is no longer considered a proto

pattern. The problem is naturally òwhoó decides this. Furthermore, since Alexander describes patterns as being

nonñstatic , we claim they will always function as òprototypesó in form of their knowledge and descriptions. For

example, the òGang of Fouró Command [Gamma95, p.233] pattern has at least spawned the òPOSAó Command

Processor [Buschmann96, p. 277] pattern , and in the evaluation we even present a variant of the Command

Processor pattern that might eliminate the need to use Composite [Gamma95, p.163] (or macro) commands (see

section 8.3.2.3 on page 159).

3.8.4. Piecemeal Growth

Catalogues can mature and evolve into pattern systems over time as well as systems can mature and evolve into

pattern languages via a process Alexander calls piecemeal growth : patterns are applied in an ordered sequence

of piecemeal growth, progressively evolving an initial architecture , which will then flourish into a òliveó design

possessing the QWAN (see also table 3.1). As patterns are applied b y the means of piecemeal growth, applying

one pattern provides a context for the application of the next pattern [Appleton00]. This implies t hat both the

collection and the design will evolve ; if an individual pattern evolves, it may thus affect the entire collection.

EVALUATING SOFTWARE DESIGN PATTERNS ïï THEORY AND BACKGROUND a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 50 of 197

According to Appleton [Appleton00], Alexander explains that p iecemeal growth is based on the idea of re pair as

opposed to traditional architectural development processes that are based on the idea of replacement .

Traditional processes assume that each act of design or construction can be viewed in isolation , òperfectó at the

time of construction . Alexander calls such processes large lump development . Piecemeal growth acknowledges

that environments are continuously changing and growing in order to keep its use in balance . Appleton notes

that there are similarities between piecemeal growth and spiral development processes involving prototyping

and iterative /evolutionary development , such as XP, as well as large lump development and the Waterfall model

[Appleton00]. As explained in section 2.2 , iterative OOMs acknowledge that the design is not static, but dynamic

in nature. By using design patterns sharing similar traits the design will be able to evolve more easily.

A decade ago, Buschmann et al. speculated that the development of complete soft ware design pattern

languages was an optimistic, but worthwhile goal [Buschmann96, p.422] . To this day, the goal has not been

achieved, not even using the òGang of Fouró patterns as the system to evolve into a proper pattern language.

Buschmann et al. estimate that t he òGang of Fouró pattern system may cover as much as half of the generalñ

purpose design patterns of its domain [Buschmann96, p.422], i.e. at the granularity level of a few number of

cooperating classes. Even though the òGang of Fouró patterns are also over a decade old, no additions have been

added to the system by the authors . Many other design patterns have been published since then, however,

claiming to target the same domain as the òGang of Fouró patterns, for example the wellñknown òPOSAó

patterns. To our knowledge, no unified attempt has yet been made to combine the vast number of design

patterns into a unified language, or even system. This does not mean that the òGang of Fouró pattern system is

static, or has not evolved. As stated, many individual òGang of Fouró design patterns have spawned variants or

other rel ated patterns. Furthermore, variants of the system itself could also evolve, for example a system

balancing the Multithreaded Safety force described by Lea [Lea93, i.12]. To handle this force explicitly , each

òGang of Fouró pattern would have to be reñengineered, causing at least changes to the description and sample

code, but perhaps also to the pattern it self .

3.9. Pattern Application
As any tool or method, design patterns must be used correctly, i.e. when the design warrants it. It is as simple

as that. It is as difficult as that. Patterns cannot really offer any guarantees that the application design will be a

successful one [Vlissides97, i.5], and a critical, or at least careful, approach to any pattern is warranted in our

opinion. Usage is closely related to how design patterns are perceived; i.e., as a practical tool; formally; more

abstract along Alexanderõs original ideas; or somewhere in between.

3.9.1. Usage

Several antiñpatterns can help describe misuse of design patterns. The Cargo Cult [PPR, p.CargoCult] anti ñ

pattern can explain the dangers of using design patterns without unde rstanding why, and on a software

engineering level, it can describe the dangers of following the proc edures dictated by an OO Method (OOM)

without understanding why. This is relevant for the evaluation in case the investigated òGang of Fouró patterns

advocate the use of specific language features. The Golden Hammer [PPR, p.GoldenHammer] anti ñpattern can

EVALUATING SOFTWARE DESIGN PATTERNS ïï THEORY AND BACKGROUND a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 51 of 197

describe the overuse of design patterns, i.e. applying patterns were they are not needed, perhaps adding

unnecessary layers to the code (overñengineering). As a practical example, Livshits describes misuse of the

Extend Super (or the anti ñpattern Call Super) and Observer patterns in the Eclipse project [Livshits05, p.1 -3].

At [PPR, p.DesignPatternsConsideredHarmful], these very issues are discussed, especially overñengineering. No

conclusions are drawn, naturally, as the use and understanding of design patterns is the individual designerõs

prerogative, in part because of the lack of formalism. However, w e do think that critics often neglect the fact

that design patterns are more than recipes, especially concerning the òGang of Fouró patterns. A common

misconception is what Vlissides calls òthe belittling dismissaló [Vlissides97, i. 2]: patterns are only seen as

recipes containing jargon, rules, programming tricks, data structures, etc . , without acknowledging important

pattern aspects such as problem, context, teaching, and naming. The value of the òGang of Fouró vocabulary

should not be underestimated because it is a powerful tool for communicating design issues [Vlissides97, i.4].

While the òGang of Fouró patterns may not be applicable for all context s, the concepts and themes identified in

section 2.1.1 and 2.1.2 can still be utilised, because designers familiar with the patterns should also be familiar

with these themes and concepts.

Pattern usage is closely tied to th e implementation. Another issue raised is whether the use of design patterns

result in duplicate code within a system or not [PPR, p.PatternBacklash]. Some of the main design goals in any

OO system are reuse, maintenance, and modification [WirfsBrock90, p.9] . The goals are reflected in the most

important non ñfunctional forces regarding OO development as defined by Buschmann et al . , namely

Changeability, Interoperability, Efficiency, Reliability, Testability, and Reusability [Buschmann96, p.404-410]

(see also section 3.4 on page 38). Ideally, functionality should be referenced, not copied [PPR,

p.OnceAndOnlyOnce]. Duplication of c ode does not mix well with these principles and forces. Therefore, the

principle in applying patterns can seem contradictory to the very forces the patterns should heed. General

refactoring, p attern componentization , and language support are possible solutions to duplicate code problems.

Componentization and language support are discussed in some detail in chapter 4.

3.9.2. Understanding

Dominus has a bleak, but practical and perhaps more realistic, view on software de sign patterns and their usage,

and insists that software design patterns as described by the òGang of Fouró and many others are fundamentally

different from Alexanderõs ideas of patterns and especially pattern languages [Dominus02]. According to

Dominus, the òGang of Fouró idea is to discover existing design patterns (mining) , and then program people to

implement them habitually. Contrary to this, Alexanderõs pattern language help decide what should be

designed, but does not dictate ho w to design anything; the user can decide what patterns will lead to a good

design. Hence, Dominus concludes that the two approaches are completely different, representing two different

meanings assigned to the term design pattern . The òGang of Fouró approach is much less profound and human,

and he strongly advocates that the software pattern community needs to re ñimplement Alexanderõs ideas.

As we understand Alexander, we agree with the statement that software pattern collections really do not

express the ideas set forth by Alexander concerning pattern languages, e.g. QWAN, order of unfolding,

EVALUATING SOFTWARE DESIGN PATTERNS ïï THEORY AND BACKGROUND a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 52 of 197

generativity, etc. We perceive design patterns as a valuable and practical tool to aid the design process, but one

that do not generate fixed solutions. Ergo, we once again agree with Vlissides, who writes [Vlissides97, i.6]:

The key to generativity is in the parts of a pattern dedicated to teaching ð the forces and their

resolution, for example, or the discussion of consequences. These insights are particularly

useful as you define and refine an architecture. But believing that patterns themselves can

generate architectures or anything else is definitely over the top. Patterns don't generate

anything; people do, and they do so only if both they and the patterns they use are up to snuff.

On the other hand, we think that software design patterns in practice generally try to express the ideas of

forces and pattern elements, and to some extent pattern qualities. A testament to this is the large n umber of

references to Alexanderõs writings on these exact topics, for example [Appleton00; Gamma95; Lea93; Lea00;

PPR], but more importantly that the pattern fo rmats commonly used all express these notions. Dominus seems

close to performing òa belittling dismissaló [Vlissides97, i.2] of the òGang of Fouró patterns. We also think

Dominus neglects the fact that Alexanderõs patterns really cannot be chosen completely at random because of

the order of unfolding, including granularity. Because software pattern collections differ from Alexanderõs ideas,

they rarely have such restrictions. The designer is still free to choose relevant design patte rns, and should be

able to decide how to implement them. In any case, even if the meaning of software design patterns differs

from Alexanderõs notion, they can still be used (as Dominus also notes).

3.10. Summary
A software design pattern is a pattern related t o the design of software systems , but patterns can be applied

in different areas and fields . The term òdesign patternó refers to a classification of software design patterns

that can be used throughout the OOD phase for OO systems , targeting communicating objects and classes

that are customised to solve a general design problem in a particular context . Design patterns thus rely

heavily on OO concepts , and separate the principles from the implementation . Different languages can thus

be used to implement the solution described by a given pattern .

The notion of a pattern is two ñfold : a pattern is an abstraction of practical experience and basic knowledge ,

but it is also a literary description of this knowledge , written in a consistent format . The pattern descr ibes

the problem it solves as well as a solution to it ; hence, the pattern can be applied for similar problems in other

contexts. As such, design patterns are not invented, but discovered in existing solutions . Different formats

exist, containing require d pattern elements to describe different important aspects of the pattern

functionality, such as a concise name , forces , related patterns , etc . A format traditionally uses natural

language, illustrations , and examples as opposed to formal specifications. The naming of patterns allows

designers and others to communicate architectural ideas in a high ñlevel consistent language . Hence, human

interaction is paramount in pattern application because patterns are not outñofñtheñbox reusable

components; pattern applic ation as described by Alexander requires interpretation and adaptation to apply

in them in the design at hand. Within computer science, however, efforts are being made to include patterns as

language features or implement them as reusable components . Not everything that can be written using a

EVALUATING SOFTWARE DESIGN PATTERNS ïï THEORY AND BACKGROUND a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 53 of 197

pattern format constitutes a valid pattern, because patterns must possess a certain set of qualities to ensure

the overall quality of the design. The qualities are Abstraction , Composibility , Encapsulation , Equilibrium ,

Generativity , and Openness, and many of these qualities have similar constructs in OO .

A pattern can be an entr y in a collection . A pattern catalogue is a collection of loosely and/or informally

related patterns, while a pattern system is a cohesive set of related patterns described in a consistent format

that works closely together. A pattern language can be viewed as a pattern system covering a complete

domain with rules and guidelines , which explain how and when to apply its patterns to solve a probl em that is

larger than any individual pattern can solve . Patterns and pattern collections will evolve over time , reflecting

knowledge gained through continued use and adaptation . Patterns can present solutions to known software

failures that are recorded as anti ñpatterns , but unwise application of patterns may be an anti ñpattern by

itself . As patterns are implement ed using a given programming language, the features of the language may

influence the application and perhaps bring new insights to the pattern d escription . On the other hand, t he

pattern description may also dictate behaviour that has direct impact on the implementation .

Within the pattern community, there is some debate about what a design pattern is . Some people are followers

of Alexanderõs ideas, which emphasise the human interaction , while others prefer more structural

approaches in order to analyse and apply patterns . Pattern formalism tries to bring rigid structure to design

patterns at the expense of human interaction. In this thesis, we t ry to apply the best from both worlds . We

perceive design patterns as a valuable and practical tool to aid the design process, but one that do not

generate fixed solutions . As any tool or method, design patterns must be used correctly : only when the

design warrants it .

The òGang of Fouró design pattern system contains twenty ñthree design patterns classified in two

dimensions : Scope and Purpose. The Scope criterion identifies whether the pattern applies to Classes and/ or

Objects . Purpose is a problem ñbased criterion that classifies the òGang of Fouró patterns according to what

they do . Creational patterns focus on the instantiation process of objects , Structural patterns on how classes

and objects are composed to form larger structures , and Behavioural pat terns on algorithms and assignment

of responsibilities between objects. The òGang of Fouró patterns are described using the òGang of Fouró

format , using C++ and Smalltalk as example code, and we deciphered the pattern descriptions to clarify and

label the relationships between the individual òGang of Fouró patterns. The òGang of Fouró patterns express

the OO themes and concepts described in chapter 2. The concepts and C++ constructs used in the òGang of

Fouró canonical pattern implementations will be used extensively in the evaluation as reference points for

the features used in the Java 6 implementations .

EVALUATING SOFTWARE DESIGN PATTERNS ïï THEORY AND BACKGROUND a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 54 of 197

4. Related Work

When the only tool you have is a hammer,

everything looks like a nail.

ïï Abraham Maslow

The connection between design patterns and programming languages has been debated since the òGang of Fouró

patterns were published . In this chapter, we discuss selected studies regarding application of the òGang of Fouró

patterns using specific languages, as well as how different features may help provide simpler implementations or

even components. The level of language support for a given pattern will influence the implementation because

it determines how much work is required to apply the pattern. We focus on both dynamic and static languages

as we consider Java 6 a hybrid: though static, its special language mechanisms and runtime capabilities allow

Java to exhibit very dynamic behaviour at runtime. We compare the different studies and relate the

observations to issues deemed relevant for Java 6. As always, a summary concludes this chapter.

The choice of language will affect the pattern application because the language will ultimately decide what can

and what cannot be done (easily) in light of supporte d programming paradigms [Gamma95, p.4]. Several studies

have been undertaken to investigate òGang of Fouró pattern application in various programming languages. This

chapter discusses studies of implementations in dynamic languages like Common Lisp, Dylan, and Scheme, and in

static languages like C++, Java, Java + AspectJ, and Eiffel . Common features used in the various studies as well

as discovered common pattern behaviour are compared in section 4.4 , but this is not an easy task as the studies

have different focus. W e start by establishing the level of support a given language has for a given pattern.

4.1. Language Support
The traditional close connection between design patterns and statically typ ed languages is criticised by some,

mainly because static languages often lack advanced runtime constr ucts. The òhuman compileró is put to work,

repeatedly writing Metañprograms, e.g. patterns, to cope with the missing (runtime) features [Graham02]. Even

more specific, some believe the òGang of Fouró design patterns are simply a library of C++ code templates

[Dominus02; PPR, p.DesignPatternsInDynamicProgramming]. However, such claims seem to neglect that several

of the òGang of Fouró patterns were exemplified using Smalltalk that has advanced runtime features, including

dynamic typing and reflection . The patterns are still relevant even if implemented in Smalltalk . Still, others

regard traces of the òGang of Fouró patterns in the source code as code smells; an indication of the language

used is not powerful enough and/or developers blindly using design patterns [Halloway07]. This view assumes

that the entire pattern abstraction can be represented as language features. The point is moot as already

discussed in section 3.9 because like any other tool, design patterns should be used only when the design merits

it. Furthermore, we have yet to a see a language that has built ñin support for all the òGang of Fouró patterns.

At [PPR, p.AreDesignPatternsMissingLanguageFeatures], it is discussed whether a pattern stops being a pattern

in the context of a language that has some ki nd of built ñin support for it. The discussion concerns the verbal use

of the term pattern and as well as its meaning. There is no definitive conclusion presented, but it is suggested

EVALUATING SOFTWARE DESIGN PATTERNS ïï THEORY AND BACKGROUND a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 55 of 197

that design patterns are one way programming languages can evolve. The consensus seems to be that a pattern

does not stop being a pattern because a given language has support for it, but that designers stop referring to it

explicitly as a pattern, effectively altering the common vocabulary of patterns for the given domain. From this

follows that developers will stop referring to the pattern description as well; therefore, we conclude, the

ultimate consequence must then be that when all programming languages implement a given pattern, or have

support for it as a component, there will no longer be use for its description. These issues indicate a very strong

connection between patterns and languages, but one that may eventually be discarded. Meyer calls this the

Pattern Elimination Conjecture: any useful pattern should in the long t erm be discarded as a pattern, and

replaced by reusable components with a clear, simple, directly usable interface [Meyer03, p.41] . This

corresponds well with the efforts being made regarding pattern formalism as described in section 3.6 at the

expense of human interaction in the application process.

4.1.1. Implementation Level

In [Norvig96], Norvig classifies the level of implementation a pattern can have in a given programming language

as paraphrased in table 4.1 below. Builtñin support for a pattern thus corresponds to either Invisible or Formal

if part of the standard libraries , while Informal corresponds to Alexander õs view on pattern application.

Table 4.1 ñ Pattern implementation level (modified from [Norvig96, p.7])

Level

Description

Java 6 Example

Invisible A pattern is so much a part of the language that its usage is
not noticed by the user.

The forñeach loop help hide explicit
usage of the Iterator pattern.

Formal A pattern is implemented in a language, but must be
instantiated or called for each use (component) .

The Iterator pattern can still be
explicitly implemented and/ or used.

Informal A pattern is part of a common shared vocabulary and
referred to by name, but must be implemented from scratch
for each use based on its description.

The Singleton pattern must be
implemented for each relevant class.

Note, that even though a pattern is invisible on average use does not mean that it cannot be used formally.

Invisible and Formal does not exclude a pattern from a common vocabulary or from being implemented

alternatively eith er, e.g. Informally . The classification is rather subjective because different users may notice

different things, depending on the ir point of view: an API developer may need to create different Iterator

implementations, but the API user may not need to. In our view, the distinction between Invisible and Formal is

vaguely defined, whereas it is easier to distinguish between Formal and Informal.

As summarised in the section 4.2.1, Norvig implements the òGang of Fouró patterns in Common Lisp and Dylan

and arrives at òsimpleró implementations . At [PPR], Norvigõs simpler implementations of the òGang of Fouró

patterns are seen as augmenting Grahamõs critique about the òhuman compileró at work. However, while Norvig

is in agreement with Graham in using certain dynamic features to implement functionality, Graham is directly

criticising the concept of design patterns . By using a proper language, says Graham, the need for design patterns

is nonñexistent. We disagree, and to our understanding, so do es Norvig, Meyer [Meyer03, p.41], and [PPR].

EVALUATING SOFTWARE DESIGN PATTERNS ïï THEORY AND BACKGROUND a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 56 of 197

4.1.2. Discussion

In our view, the validity of a design pattern is not lessened because a given language has full, partial, or just

easier support for it . The knowledge represented by a design pattern should ideally be independent of any

specific programming language, what Norvig calls Programming Into a language [Norvig96, p.58] as already

described in section 2.5 . Lea states that a pattern is not an implementation, but instead describes when, why,

and how to go about creating an implementation or other engineering product [Lea00, i.6]. We believe the

danger of equalising design patterns with the implementation is forgetting that the human factor is paramount

in understanding and applying design patterns in different contexts, which is exactly what makes design patterns

a very flexible tool indeed. On the other hand, the ease and practicality of using design patterns is also

important. For example, nobody wants to implement the Iterator pattern for each system . In Java, the Java

Collections framework is used. In Java, however, everybody has to implement the Sing leton pa ttern for each

applicable class because the language does not support the abstraction described by the pattern (which Java

actually in part does, as discovered during the evaluation and explained in section 7.1.1.4 on page 92). Hence,

the sheer practicality in the frequent application of certain simple design patterns in our view warrants Formal

and/or Invisible implementations, respectively componentization and/or language support. Even though Coplien

is in favour of pattern componentization [Coplien, i.3], he equalises the human factor (still required) with

creativity and claims it will always be needed [Coplien, i.11]. Along these lin es, Fowler argues that patterns are

needed because realñworld solutions have failed despite using the latest technology for lack of ordinary

solutions. Patterns provide a way to organise and name those ordinary solutions to make it easier for ordinary

people to use them [Fowler06]. This is contrary to Grahamõs claim of design pattern usage being

òinstitutionalised ó [Graham02], especially considering no standard formalisation of patterns has been agreed

upon as discussed in section 3.6 on page 42.

Practical pattern implementation, however, is dependent on the pattern granularity. A pattern can be applied

across systems, but also within systems. Typically, archite ctural design patterns, having large granularity, are

applied once per system, for example the Two ñTier Architecture pattern from example 2.3 on page 25. We find

it reasonable to assume their level of granularity and abstraction will make them difficult to componentize

compared to the òGang of Fouró patterns with finer granularity. Therefore, they must be adapted to the system

at hand. Hence, it is also unlikely they will evol ve into language features. Ergo, they will not cause duplicate

code. Conversely, the òGang of Fouró design patterns describe problems and solutions that are so common they

occur in many different contexts with relatively fine granularity within the same sy stem. It is unreasonable to

assume that such patterns, for example Iterator, would be applicable only once in a system, even more so for

idioms as they are very tightly connected to a given programming language.

On the other hand, even some òGang of Fouró patterns like Facade and Template Method pose problems because

of abstraction and granularity level. Hence, componentization and language support in form of Formal and

Invisible patterns, respectively, can augment reuse, but patterns that for one reason or another remain Informal

still generate specific implementations for each usage even within the same system. We consider the Singleton

pattern the archetypal example of this in Java. This raises the issue if Informal design patterns collide with the

principles of OO as discussed at [PPR]. In our view, this is not the case . Each application of the pattern will

EVALUATING SOFTWARE DESIGN PATTERNS ïï THEORY AND BACKGROUND a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 57 of 197

cause an implementation targeted for a specific problem in a specific context within the system. Two different

contexts will thus ca use two different implementations, albeit similar. Common functionality can still be

factored out. What appears as duplicate code is in reality not; the true semantics come from the pattern

description combined with the specific adaptation. In Alexanderõs domain, a house could be an analogy to an OO

system: is it unreasonable to assume that within a given house, a òwindow pattern ó can be applied more than

once? Obviously not, and this results in duplicate functionality. In case the design of a window is dis covered to

be flawed, for example if the glass does not provide sufficient insulation, all windows have to be repaired or

replaced eventually. Still, the alternative is surely not to apply the pattern only once.

We believe the success of componentizing a given pattern into a language or library depends perhaps more so on

its abstraction and granularity level than the language in which it is implemented . It is possible, though, that the

language will dictate behaviour that makes componentization difficult, if not impossible. While the human

factor is important in understanding and applying patterns, we still think simple design patterns should be

componentized, if possible; or even better evolve into language features.

4.2. Dynamic Languages
The studies by Norvig [Norvig96] and Sullivan [Sullivan02a; Sullivan02b] emphasise that dynamic features of

Common Lisp, Dylan, and Scheme, respectively, have a large impact in providing simp ler implementati ons.

However, we cannot find a standard precise definition of what a dynamic language is or what it must support. A

generalisation is that a dynamic language possesses one or more of the following overall features: dynamic

typing, runtime code modification , and interpretation [Hacknot07]. Dynamic typing (or dynamic type binding)

enforces type rules at runtime as opposed to compile ñtime . The type of a variable is not determined until the

variable is actually used at runtime [Sethi96, p.137]. Runtime code modification allows changes to the structure

of executing code, for example adding new methods to an object. Interpretation is the process of reading and

evaluating program code at runtime without prior compilation; a n interpreter runs the program directly

[Sethi96, p.20]. It is also worth noting that Common Lisp, Dylan, and Scheme all are functional languages.

4.2.1. Common Lisp and Dylan

Not long after the òDesign Patternsó book was published, Norvig showed that sixteen of the twenty ñthree òGang

of Fouró patterns have qualitatively simpler implementation in Common Lisp or Dylan compared to C++ for at

least some uses of each pattern [Norvig96, p.9]. Common Lisp and Dylan are dynamic languages, and many of

the language features found in dynamic languages are exactly what makes the pattern application simpler, such

as firstñclass types [Norvig96, p.10]. Table 4.2 illustrates the specific features Norvig found that influenced

specific òGang of Fouró patterns.

Unfortunately, Norvig does not directly apply his implementation level classification to the òGang of Fouró

patterns, nor does he discuss why seven patterns cannot be ma de simpler in dynamic languages. Though note

that four of them are Structural patterns, i.e. Adapter, Bridge, Composite, and Decorator, two are Creational,

i.e. Prototype and Singleton, and only one is Behavioural, namely Memento. At first, this seems to m ake sense:

EVALUATING SOFTWARE DESIGN PATTERNS ïï THEORY AND BACKGROUND a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 58 of 197

dynamic languages are all about runtime behaviour whereas Structural patterns represent (static) structure.

However, the ability to perform runtime code modification would seem to affect at least Adapter, and Decorator

is an ideal candidate for method combination. Furthermore, the two Creational patterns would be almost

directly supported in prototype ñbased languages, which Common Lisp and Dylan are not; Common Lisp utilises

CLOS for OO capabilities (e.g. multiple ñdispatch), and Dylan utilises bu ilt ñin classes.

Table 4.2 ñ òGang of Fouró patterns in Common Lisp and Dylan (modified from [Norvig96, p.10])

Feature

Description

òGang of Fouró patterns

Firstñclass types Types can be used without restrictions and are treated
as any other (first ñclass) object, i.e. can be
constructed at runtime, stored in variables, have
identities, etc . [Norvig96, p.11].

Abstract Factory, Chai n of
Responsibility, Factory
Method, Flyweight, Proxy ,
State

Firstñclass functions A firstñclass function is a first ñclass object, and can
for example be created at runtime [Norvig96, p.14].

Command, Strategy,
Template Method, Visitor

Macros Macros provide syntactic abstraction [Norvig96, p.17] . Interpreter , Iterator

Method combination Combination of methods having the same signature to
execute in a given order [Sullivan02a, p.9]. Enforced by
the language as in CLOS or explicitly , e.g. using the
Extend Super pattern (see section 3.8.2 on page 48).

Mediator, Observer

Multi ñmethods
(multiple ñdispatch,
generic function)

In multiple ñdispatch, methods are grouped based on
their name into multi ñmethods, and the correct
method to invoke is determined based on all the
arguments [Sullivan02a, p.8 -9].

Builder

Modules A module explicitly encapsulates data and operations
[Sethi96, p.209]. May also represent namespaces
[Norvig96, p.28] .

Facade

Not discussed

Adapter, Bridge, Composite, Decorator, Memento, Prototype, Singleton

Some understand Norvigõs work as a criticism of design patterns, but in our view, Norvig is not criticising the

concept of design patterns, merely stressing the impact of the programming languag e, advocating the use of

dynamic languages. Norvig even suggests several other pattern variants for dynamic languages as well [Norvig96,

p.31]. He states that design patterns are higher ñorder abstractions for program organisation that help discuss,

weigh, and record design trade ñoffs [Norvig96, p.4].

4.2.2. Scheme

In [Sullivan02a] and [Sullivan02b], Sullivan studies if language features can move design patterns away from the

Informal implementation level into the Invisible or Formal levels ; that is, how the basic capabilities of reflection

and dynamism affect the need for, use of, and implementation of the òGang of Fouró design patterns. To try to

establish a connection betwe en modelling and programming languages, Sullivan investigates how languages can

enable more abstraction in a declarative style, i.e. abstraction expressed using language constructs , for example

in form of multi ñmethods. Sullivan emphasises the need for modelling as models enable abstraction, are

declarative in style, and can allow for preñruntime verification , but warns that dynamic features make it more

difficult to analyse program statically [Sullivan02b, p.3,35] . As the language, Scheme is used with the GLOS

EVALUATING SOFTWARE DESIGN PATTERNS ïï THEORY AND BACKGROUND a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 59 of 197

library that adds certain OOP facilities. Sullivan reasons that reflection is closely related to first ñclass values as

reflection refers to the ability of a program to reason about its own structure and behaviour [Sullivan02a, p.3].

Table 4.3 summarises the outcome of Sullivan õs investigations based on the summaries for each investigated

pattern in [Sullivan02a]. It illustrates which featur es where useful in a given pattern implementation, and there

is a large overlap with the features discussed by Norvig from table 4.2.

Table 4.3 ñ òGang of Fouró patterns in Scheme + GLOS

Feature

Description

òGang of Fouró patterns

Firstñclass types See table 4.2 on page 58. Abstract Factory , Builder ,
Prototype

Firstñclass functions See table 4.2. Adapter, Builder, Chain of
Responsibility, Command,
Iterator , Mediator , Strategy

Macros See table 4.2. Proxy

Method combinat ion See table 4.2. Decorator, Proxy, Memento

Multi ñmethods
(multiple ñdispatch,
generic function s)

See table 4.2. Abstract Factory, Adapter,
Builder, Chain of
Responsibility, Factory
Method, Mediator, Observer,
Strategy, Visitor

Modules See table 4.2. Adapter

Reflection Reflection refers to the ability of a program to reason
about its own structure and behaviour [Sullivan02a,
p.3].

Abstract Factory, Prototype,
Chain of Responsibility,
Memento

Instantiation protocol s Controls how objects are created, either explicitly or
implicitly (hidden or built ñin).

Factory Method, Singleton,
Flyweight , Proxy

Singleton types A type that matches exactly one value [Sullivan02a,

p.6], e.g. an instance of java.lang.Class in Java.

Abstract Factory , Factory
Method, Proxy

Predicate types Predicate types are based on predicate functions and
thus resolved at runtime [Sullivan02a, p.9] .

State

Closures A closure consists of an expression (function) and its
saved environment [Sethi96, p.534].

Command, Flyweight,
Iterator , Strategy

Prototype ñbased Has no notion of classes. Behaviour reuse is achieved by
cloning existing objects that act as prototypes.

Prototype, State

None (similar)

Bridge (universal), Composite, Facade (universal), Interpreter , Template Method
(universal)

In accordance with Norvig, Sullivan concludes that dynamic features such as reflection, multiple ñdispatch,

higherñorder functions, and predicate types have a positive impact on nearly all of the òGang of Fouró patterns

[Sullivan02a, p.43] . Underlined patterns in the table above represent similar usage by Norvig. Instantiation and

method protocols are also effective [Sullivan02b, p.34] . Sullivan states that the need for explicit patterns may

disappear or the implementation may become much simpler , but mention that the Scheme implementations do

not always capture the entire pattern functionality . Emphasis is clearly on the implementation aspect at the

expense of pattern abstraction . Factory Method and Singleton, for example, are described as easily

EVALUATING SOFTWARE DESIGN PATTERNS ïï THEORY AND BACKGROUND a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 60 of 197

implemented in any language supporting an extensible instantiation protocol, but C++ already supports

modification of the instantiation protocol by overloading new [Stroustrup91, p. 215]. This indicates that the

pattern s describe more than code. Command and Strategy are implemented using closures, but closures do not

capture the abstraction of an object with addit ional functionality, i.e. ex tra functionality, polymorphism,

identity, etc. Just because a language supports a given feature does not mean the feature is the pattern by

itself . What it does mean is that the feature in certain cases can represent the pattern implementation in the

language in question.

Comparing the results from Sullivan and Norvig, it puzzles us that Norvig only lists the patterns as utilising a

single feature. It is probably for educational or practical purposes, i.e. listed according to primary exploited

feature. We think t his is why there is little overlap in features for the individual patterns (underlined patterns in

table 4.3), while the overall conclusions are the same. Unfortunately, it makes it hard to conclu de anything

based on Norvigõs study. Sullivan is more detailed, and several of the patterns no t covered by Norvig are

addressed, for example Adapter, Decorator, Prototype, and Singleton. Sullivanõs conclusion, however, comes as

no surprise as Scheme is closely related to Lisp . Like Norvig, Sullivan accedes that the òGang of Fouró patterns

are closely related to design and modelling as the patterns discuss design tradeñoffs. Even more so, certain

patterns represent universal programming concepts that cannot be solved with language features alone

[Sullivan02a, p.43; Sullivan02b, p.36].

4.3. Static Languages
C++ and Java are statically typed languages. Type errors are detected at compile ñtime. The advanced features

discussed by Gamma et al. for the òGang of Fouró implementations all but a few exclusively targets Smalltalk,

which uses dynamic typing.

4.3.1. C++

The òGang of Fouró patterns all supply implementation or sample code in C++. The features used are those

presented in the Implementation and Sample Code pattern elements in [Gamma95]. Gamma et al. primarily use

C++ constructs found commonly elsewhere as well, e.g. classes, inheritance, access modifiers, etc . , but more

exotic features like templates, multiple inheritance, friends, overloaded operators are also utilised. These

features are not found in Java 6, and hence alternative ways to implement the pattern in question must be

applied.

4.3.2. Java

All the òGang of Fouró design patterns have been implemented in at least Java 1.2, 1.3, and 1.4, some even at

an Invisible implementation level as exemplified in section 2.6.2 on page 29. Many different Java

implementations of individual òGang of Fouró patterns exist. Grand, for example, presents almost exact Java 1.2

versions of all the òGang of Fouró design patterns in [Grand98; Grand99], and Hannemann et al. have

implemented pure , albeit very simpl e, Java 1.4 versions used for comparison with the AspectJ implementations

discussed next [Hannemann02]. Another example is [Eckel03], where some of Javaõs more advanced features

EVALUATING SOFTWARE DESIGN PATTERNS ïï THEORY AND BACKGROUND a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 61 of 197

such as reflection and dynamic pro xies are used. However, the implementation level of the individual patterns is

primarily Informal, and we know of no efforts to componentize the òGang of Fouró patterns in Java 5 or 6.

Hence, all òGang of Fouró patterns are known to be applicable in Java. This is expected as Java adheres to the

fundamental OO concepts and can directly express many of the themes discussed by Gamma et al. Java is not

considered a dynamic language, but it still possesses advanced runtime features like reflection and dynamic

class loading. Bearing Norvig and Sullivanõs work in mind, we therefore assume that the practical application will

be easier and/or present alternatives to the canonical C++ implementations. On the other hand, runtime

features in classñbased languages often yield verbose source code, which could imply more work, and possibly

clutter the core functionality and intent of the pattern when reviewing the source code . Reusable libraries and

components, however, can shield the pattern imp lementations from much of t his.

4.3.3. Java and AspectJ

Sullivan notes that crosscutting concerns of AspectñOriented Programming (AOP) matches well design patterns

because patterns are primarily concerned with the coordination of multiple òpartsó of a system, typically via

classes and abstract methods [Sullivan02a, p.3] . Patterns are the glue that connects the joints [Sullivan02b,

p.6]. Hannemann et al. have shown this in practice by implement ing the òGang of Fouró patterns in Java 1.4 and

AspectJ [AspectJ], claim ing that seventeen of the twenty ñthree implementations exhibit modularity

improvements in terms of better code locality, reusability, composibility, and (un)pluggablity. The

improvements vary, but with the greatest improvement coming when the pattern solution structure involves

crosscutting concerns, e.g. one object playing multiple roles, many objects playing one role, or an object

playing roles in multiple pattern instances [Hannemann02, p.1]. Besides locality and reusability, and following

codeñlevel b enefits, Hannemann et al. state that modular pattern implementations ensure that the entire

pattern description of a pattern instance is localised and does not òget lostó or òdegenerateó in a system as

could otherwise pose a problem [Hannemann02, p.7]. Twelve of the implementations constitute reusable

components with respect to abstract aspects [Hannemann02, t.1].

AspectJ uses aspects to encapsulate crosscutting concerns in one place . They can apply additional behaviour, or

advice, to various joint points , for example constructors or methods. Joint points are specified using pointcuts ,

either directly or in form of a òqueryó to detect if a given j oint point matches the aspect based on signatures.

Furthermore, to encapsulate all code related to a given concern in a single aspect, the open class mechanism

might be used to declare members or parents of another class . For a full introduction to AspectJ , see [AspectJ].

Table 4.4 on page 62 lists the different AspectJ features used to improve the various òGang of Fouró

implementations .

As expected, the dynamic fe atures of AspectJ are what facilitate easier implementations. Advice is equivalent

to the method combination features found in CLOS and GLOS, clearly illustrated in the ability to execute the

contained code before, after, and around join points, though adv ice cannot be added or removed at runtime

[Sullivan02a, p.20]. Hannemann et al. utilise this feature extensively, for example to intercept calls to new for

Singleton classes, thereby creating a specific instantiation protocol. Point cuts can be seen as macros. In pure

EVALUATING SOFTWARE DESIGN PATTERNS ïï THEORY AND BACKGROUND a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 62 of 197

Java, the reflection mechanism does not allow for structural changes to classes or objects, only behavioural

(òreadñonlyó). By exposing the structure of the executing program as objects, for example the

java.lang.Class and java.lang.reflect.Method classes representing a class and a method,

respectively, such objects can be accessed like any other first ñclass object. In AspectJ, however, the open class

mechanism is a workñaround to modify Javaõs otherwise static classes, approaching true first ñclass behaviour.

AspectJ still adheres to the standard Java semantics, which gives certain static advantages such as compile ñ

time type errors . Some errors are still only seen at runtime, for example if a given pointcut does not ca ptur e a

jointpoint as expected.

Table 4.4 ñ òGang of Fouró patterns in Java + AspectJ

Feature

Description

òGang of Fouró patterns

Roles only used within
pattern aspect

Abstract aspect per pattern defines the roles and
default implementations where possible, local to the
pattern realisations. Abstract pointcuts specif y hooks
for additional specialisation [Hannemann02, p.5].

Chain of Responsibility,
Composite, Command,
Mediator, Observer

Aspects as object
factories

Patterns are abstracted into aspects containing code for
the factory functionality; the factory methods used are
contained either in the abstract aspect or in the
participants [Hannemann02, p.5].

Flyweight, Iterator, Memento,
Prototype, Singleton

Language constructs Pattern implementations are directly affected by
language constructs such as the open class mechanism
or by attaching advice [Hannemann02, p.6] .

Adapter, Decorator, Proxy,
Strategy, Visitor

Multiple inheritance Pattern implementations can implement any number of
interfaces and use the open class mechanism to attach
default functionality [Hannemann02, p.6].

Abstract Factory, Factory
Method, Bridge, Builder,
Template Method

Scattered code
modularised

Attaching advice to be break tight coupling between
participants [Hannemann02, p.7] .

Interp reter, State

None (similar)

Facade

Some of the implementations in AspectJ result in a completely new design structure. We find it difficult to

identify the actual role Java occupies in this study as opposed to specific AspectJ features. Most of the Java

features used in the implementations are trivial, such as classes and interfaces. Very few advanced features

such as inner classes and weak references are used. The pattern functionality is achieved with the AspectJ

features, which may mimic C++ feature s such as multiple inheritance and private (functional) inheritance.

By using Javaõs builtñin reflection mechanism and annotations as of version five, we believe much of the same

dynamic functionality could be achieved without the use of AspectJ , though at some expense. Classes could

implement advice functionality that can be attached to any accessible object (jointpoint) , i.e. field,

constructor, or method. Pointcuts could be specified by annotations. Unfortunately, all access to enriched

objects must go through proxy objects to intercept invocations to apply the advice , but it would allow the

advice to change at runtime . This indicates a need for a framework to handle the execution. Furthermore , as

reflection would be utilised extensively, runtime errors are in effect unavoidable , but probably manageable. It

reminds us of existing products using similar ideas, such as Hibernate, JBoss Seam, or Google Guice. In any case,

EVALUATING SOFTWARE DESIGN PATTERNS ïï THEORY AND BACKGROUND a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 63 of 197

in accordance with Sullivanõs conclusions, Javaõs reflection mechanism could have a significant impact on the

òGang of Fouró pattern implementations as most are exemplified using C++ that has few runtime features .

4.3.4. Eiffel

In section 2.6.2 on page 29, we discussed how patterns could aid in the implementation phase during OO

development . Options are adaptation and application, componentization , and language support, corresponding

with Norvigõs implementation levels Informal, Formal, and Invisible, respectively. Using Eiffel as the

programming language, Meyer and Arnout claim to provide full componentization for eleven of the òGang of

Fouró patterns and partial componentization for an additional four [Meyer06, p.3], totalling two thirds of the

patterns. Full componentization is defined by Meyer and Arnout to include all the original pattern functionality

[Meyer06, p.2] and is equivalent to what Norvig calls first ñclass patterns [Norvig96, p.31]. Their implementati on

level is Formal because as components they can be treated like any other object [Norvig96, p.32], or Invisible as

part of the language. Componentization is an effective way to avoid duplicate code as discussed in section 3.9.1

on page 50. It is more difficult than ad ñhoc pattern application as examined by Norvig and Sullivan , however,

because it focuses extensively on reusability. The focus of Meyer and Arnout is closer to pure Java 6

implementations compared to the AspectJ implementations by Hannemann et al., because their components

rely on reusable classes, not reusable aspects [Arnout06]. Furthermore , the specific Eiffel features utilis ed in

the components are described in [Arnout06, t.1].

Examples of full componentization achieved by Meyer include Composite, Command, Abstract Factory, and

Visitor [Meyer06, p.10 -11]. Six patterns required some fo rm of automated support to help integrate them into

libraries through reusable skeletons, or though components that address part of the problem. Only two patterns

could not even be partially componenti zed or handled through some automated support, namely F acade and

Interpreter; Facade is obvious, because it is completely dependent on the context and abstraction used, it

seems universal and language independent. Componentization makes pattern application in the implementation

phase much easier, but also fixa tes the behaviour to the functionality available. A componentized pattern is only

applied once, and then reused, possibly in a specialised fashion; it becomes a mere recipe instead of a full ñ

fledged description. Partial componentization does not express the full knowledge expressed in the pattern

descriptions, thereby limiting the pattern applicability unless the component itself expresses pattern ñlike

qualities such as Openness and Generativity. The same is true for any Invisible or Formal implementation.

Meyer and Arnout recognise that the language used clearly affect the componentization process [Arnout06;

Meyer06, p.3,11], and that componentization affects pattern applicability [Meyer06, p.11]. Eiffel is not a

dynamic language as it employs static and strong typing, but many of its special features are used, such as

multiple inheritance, generics with or without bounds, contracts, agents, and cloning facilities [Arnout06, t.1].

Meyer and Arnout compare the Eiffel features used with featu res in Java (1.4), and question if the ideas used in

the Eiffel implementations can be used in Java, although they suggest that reflection might provide some

solutions [Arnout06]. Language impact and componentization are therefore closely related, which is also

demonstrated by the fact that AspectJ features augment the entire componentization process in the study by

Hannemann et al. As of Java 5, generics have been added to Java, but multiple inheritance and agents are not

EVALUATING SOFTWARE DESIGN PATTERNS ïï THEORY AND BACKGROUND a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 64 of 197

supported. However, we fail to see how the lack of these features should prevent componentization of the

òGang of Fouró patterns in Java, but agree that different solutions must be implemented.

4.4. Comparison
This section offers a quick comparison between the features utilises in the examined studies and the features

found in Java 6. It also summarises common pattern behaviour identified in the individual studies as well as can

be expected bearing the differ ent scope of the studies in mind . The features listed in this section is not the final

list of Java 6 features and mechanisms used in the evaluation, but provide clues to which features may be

useful.

The studies on Common Lisp, Dylan, and Scheme all focus on making the òGang of Fouró implementations

simpler using explicit language features found in the respective language s. The AspectJ and Eiffel

implementations focus on traditional OO values, primarily reus ability, where the language features used are

simply the means to an end. This evaluation is somewhere in between: we do not strive to make the

implementations simpler ð since that depends on the eye of the beholder ð but to illustrate how features in Java

6 can be utilised in the implementation proces s, which may spawn reusable components.

4.4.1. Features

Sullivan concludes that dynamic features such as reflection, multiple ñdispatch, higherñorder functions, and

predicate types have a positive impact on nearly all of the òGang of Fouró patterns [Sullivan02a, p.43]. Norvig

agrees, and claims dynamic features found in dynamic languages is exactly what makes the pattern application

simpler [Norvig96, p.10]. Java 6 in part supports two of these three dynamic traits described in section 4.2 , i.e.

dynamic typing, runtime code modification, and interpretation. Java employs static typing in favour of dynamic

typing. Baring instrumentation (see the java.lang.instrumentation package), runtime code modification is

not directly supported by Java. The reflection mechanism does not allow for structural changes to classes or

objects, only behavioural (òreadñonlyó). Java objects can access Meta data reflectively, such as classes and

methods, and dynamic proxies can be used to create new types at runtime. Java is compiled into byte ñcode

that is interpreted at runtime.

The studies by Norvig and Sullivan suggest that Javaõs reflective capabilities will be useful in the pattern

implementation. Of the features listed in table 4.2 and table 4.3, Java 6 supports several of them but to a

varying degree. Firstñclass types and functions are only partly supported. There is no way to create a regular

class or method onñtheñfly, but dynamic proxies can create duck types at runtime (see section 7.1.2.4).

Besides creational restrictions, types and methods can be manipulated like any other object (òsecondñclass

objectsó). Modules correspond to packages. Multiñmethods are not supported, but generic methods can be used

in a type safe manner for any applicable type. Closures are partly supported in form of inner cl asses.

Instantiation protocols and method combination must be explicit enforced by the developer, which is

unfortunate, as these features are found useful in Common Lisp, Scheme, and AspectJ.

EVALUATING SOFTWARE DESIGN PATTERNS ïï THEORY AND BACKGROUND a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 65 of 197

Meyer and Arnout list the features used for the òGang of Fouró patterns they succeeded to componentize

[Arnout06, t.1]. The features used include òdesignñbyñcontractó (invariants), inheritance, multiple inheritance,

generics, bounded generics, agents, and cloning facilities. Java 6 has direct support for inheritance, generics,

bounded generics, and cloning. Agents, or delegates, are not directly supported by Java 6, but can be emulated

by closures or using reflection. Designñbyñcontract and multiple inheritance are not supported . Java assertions

are useless as they must be turned on to work . It may be possible to use dynamic proxies to emulate multiple

inheritance.

The Hannemann et al. study does not offer much concerning which Java features to use. The comparison

between features in C++ and Java 6 is already indirectly made in table 2.2 on page 15.

4.4.2. Patterns

It is interesting that Hannemann et al. , Meyer, and Arnout cannot componentize at least the same set of

pattern s, namely Adapter, Bridge, Decorator, Facade, Interpreter, and Template Method [Arnout06;

Hannemann02, t.1]. As illustrated in table 4.3, Sullivan has trouble providing simpler implementations for all of

these patterns except Adapter and Decorator. Norvig does not discuss Adapter, Bridge, and Decorator, perhaps

an indication of simpler implementations could not be made. This indicates the pattern abstractions ar e very

context and problem specific . It is also interesting that out of the twenty ñthree òGang of Fouró patterns, only

four have Class scope ð and three of these are included in the above list, namely Adapter, Interpreter, and

Template Method. Hannemann et al. cannot componentize the last pattern with Class scope either, Factory

Method. The implementation level of these patterns thus corresponds to Informal . However, it does not say

anything conclusive about language dependencies. It could seem reasonable to assume that the same language

features are required regardless of language used, for example abstract classes in Template M ethod, packageñ

like functionality in Facade, and composition in Interpreter. Nonetheless, Common Lisp and Scheme have no

notion of classes, so this is clearly not the case for Template Method, for example. Other language features may

also be applied. As an example, decoration and adaptation can be performed using dynamic proxies in Java 6. In

our view, no definitive conclusions can be drawn in this respect. This corresponds with our initial belief from

section 4.1.2 that the success of componenti zing a given pattern into a language or library feature depends

more on its abstraction and granu larity level than the language in which it is implemented.

For Java and AspectJ, it is clear that Behavioural patterns are most easily componentized, with eigh t out of the

twelve: Chain of Responsibility, Command, Composite, Iterator, Mediator, Memento, Observer, and Strategy.

The last four are Composite and Flyweight (Structural) and Prototype and Singleton (Creational) [Hannemann02,

t.1] . Many of the Behavioural patterns have a containerñlike structure, or operate on a container ñlike

structure, for example Observer and Visitor, respectively. In our opinion, this makes them ideal for

componentization, as the abstraction is not that complicated. Of the fifteen patterns componentized by Meyer

and Arnout in Eiffel, there is an overlap with ten patterns from the AspectJ components. The only difference is

Iterator and Singleton, while Meyer and Arnout also provide components for Abstract Factory, Builder, Factory

Method (Creational) , Proxy (Structural) , and State (Behavioural) [Arnout06, t.1] . This is indeed a close match,

and a strong indication that the abstractions described by Behavioural patterns are easily implemented in

EVALUATING SOFTWARE DESIGN PATTERNS ïï THEORY AND BACKGROUND a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 66 of 197

different languages. Common features used by Meyer and Arnout in these patterns include designñbyñcontract

invariants, inheritance, generics, and to some extent agents. Features used by Norvig and Sullivan for

Behavioural patterns primarily include first ñclass objects , multi ñmethods, method combination, closures, and

reflection.

While Hannemann et al. ha ve trouble with Creational patterns, e.g. Abstract Factory, Builder, and Factory

Method, Meyer and Arnout provide componentization of these patterns as well. Sullivan and Norvig have no

problems with Creational patterns either, and utilise many o f the same features, for example first ñclass types

and instantiation and method protocols. Singleton in AspectJ is also implemented using instantiation protocols.

Structural patterns seem to be th e classification of patterns that generally causes most problems, regardless of

the scope of the study in question . Gamma et al. state that Structural patterns rely on a small set of language

features, namely single and multiple inheritance for patterns with Class scope, and object composition for

Object scoped patterns [Gamma95, p.219]. This indicates that alternative solu tions may be hard to implement.

Meyer and Arnout only provide componentization of a single Structural pattern, namely Proxy, and Hannemann

et al. of only two as mentioned abo ve, e.g. Composite and Flyweight . Still, several Structural patterns provide

very decent implementations according to Hannemann et al. in form of locality and (un ñ)pluggability , for

example Adapter, Decorator, and Proxy [Hannemann02, t.1] . In unison, Sullivan and Norvig agree on simpler

implementatio ns for Adapter, Decorator, Fa cade, Flyweight, and Proxy. Again, there is an overlap of patterns ,

e.g. Adapter, D ecorator, Flyweight, and Proxy.

The examined studies show that languages have great impact on the pattern implementation s. The studies by

Hannemann et al. and Meyer and Arnout also show that implementations can also express many of the desired

pattern forces, such as Reusability, Interoperability, and Changeability , which are closely related to traditional

OO concepts.

4.5. Summary
Below, we list and then summarise the most important points from this chapter :

 As already noted by Gamma et al., th e choice of language will affect the pattern application because

of inherent language fea tures and the level of support for the patterns .

 The studies related to dynamic languages examined conclude that dynamic features and reflection

have a positive impact on nearly all of the òGang of Fouró patterns.

 The studies related to static languages ex amined conclude that many of the òGang of Fouró design

patterns can be componentized .

 Based on the examined studies and personal experience, we conclude that Java 6 will be useful for the

evaluation because of its mixture of static and runtime features , but that it is the pattern abstraction

more so than the language that determines the ease of implementation and componentization.

EVALUATING SOFTWARE DESIGN PATTERNS ïï THEORY AND BACKGROUND a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 67 of 197

The level of implementation a given pattern can have in a programming language is classified as Invisible ,

Formal , or Informal . Invisible indicates a pattern is so much a part of the language that its usage is not

noticed by the user. Formal indicates a pattern has an implementation in the language, but must be

instantiated or called for each use . Informal indicates a pattern is p art of a common shared vocabulary and

referred to by name, but must be implemented from scratch for each use based on its description.

The studies related to dynamic languages examined conclude that dynamic features have a positive impact on

nearly all o f the òGang of Fouró patterns, for example reflection , first ñclass objects , method combination,

multiple ñdispatch, and higherñorder functions . Several of the dynamic features discussed are present in Java

6, such as reflection , or can be simulated to some extent , for example via dynamic proxies .

The studies related to static languages examined conclude that it is possible to componentize several of the

òGang of Fouró design patterns, but the language and pattern abstraction will determine if a given patter n

can be implemented as a component . We believe the success of componentizing a given pattern into a

language or library depends perhaps more on its abstraction and granularity level than the language in which

it is implemented. Behavioural patterns seem more manageable compared to Structural patterns , with

Creational patterns somewhere in between. This indicates support for advanced runtime features will be

beneficial . Patterns having Class scope are more difficult to work with compared to patterns with Ob ject

scope. Several of the language features used in the pattern components are present in Java 6 , for example

generics .

EVALUATING SOFTWARE DESIGN PATTERNS ïï EVALUATION a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 68 of 197

5. Evaluation Approach

Whenever anyone says, ñtheoreticallyò,

they really mean, ñnot reallyò.

ïï Dave Parnas

Because of the versatili ty of design patterns and the extensive human interaction required for utilisation, there

is no straightforward way to benchmark the correlation between patterns and their implementations using test

frameworks, simulations, or other automated tools. Ideally, applying design patterns require human interaction

in all phases of the software development life ñcycle, including in the final evaluation of the developed system.

The evaluation approach defined here, however, focuses on the practical application of th e òGang of Fouró

patterns using a given language catalyst. This chapter defines and explains a simple evaluation approach that is

independent of any given language. It can thus be used in similar evaluations with different language catalysts

and perhaps different pattern systems providing they are described in the òGang of Fouró format. The goal of

the evaluation is simply to implement all representative pattern functionality described in the Implementation

and Sample Code elements for each pattern , if possible, using a single language. The evaluation outcome is then

reported using a subñset of the familiar òGang of Fouró format. Using Java 6 as the catalyst, this will allow us to

perform a reasonably structured evaluation of the entire òGang of Fouró pattern system, because the individual

implementations must be juxtaposed to identify common traits as well . We start by establishing the focus of the

evaluation approach before we outline the approach itself. The approach requires both individual and collective

evaluations of the òGang of Fouró patterns. Once the approach is defined, we use it to state the goals for this

evaluation using Java 6 as the language catalyst, and we determine the language features that will be used.

5.1. Focus
Design patterns are not an exact science. There is no mathematical way to deduce if a pattern is correct or not

since it is based on empirical knowledge and experience, though several formalisation techniques have emerged

within the last few years (see for example [Baroni03; Eden04; Taibi07]). The concept of patterns cannot exist

without human interaction, as patterns are described and interpreted by humans. The idea of a pattern must be

captured and described by the author (òwhat does it do?ó); based on it, pattern behaviour and applicability may

be inferred by the user (òhow is it done?ó), but the interpretation will be based on the userõs point of view.

Neither part can be excluded. It is hard to speculate upon, which part is easier to evaluate. Evaluating well ñ

written pattern descriptions and/or implementations could be easier than evaluating pattern abstractions

because wellñwritten descriptions could be more tangible than the concept they describe. The reverse could

also be true . The evaluation performed here does not evaluate the validity of the abstractions, merely practical

issues encountered during application from our point of view. How a user views the pattern will affect the

application of it, and only through impl ementation and testing in the given scenario can the desired behaviour

be confirmed. Because of the human factor and the versatility of patterns, there is no straightforward way to

benchmark patterns using test frameworks, simulations, or other benchmarkin g tools. To evaluate patterns is to

implement them from a specific point of view, which is what th e evaluation approach conveys. This implies that

any evaluation of patterns will be subjective and that its conclusions must adhere to the initial point of vi ew and

EVALUATING SOFTWARE DESIGN PATTERNS ïï EVALUATION a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 69 of 197

interpretation. Hence, the goals of the evaluation can only make sense if the viewpoints used are established

and explained.

Example 5.1 ïï To illustrate how different points of views can affect th e evaluation, consider evaluating a

car, say an Aston Martin, for some magazine from the point of view of a mechanic and from the point of view of

the owner. The mechanic may approach the evaluation in a technical fashion, focusing on the design of the

engine, e.g. engine performance. The evaluation could investigate different parts of the engine in turn, e.g.

specific criteria, and comment on issues deemed relevant by the mechanic, as well as state a conclusion to the

overall performance. The conclusion mi ght be that the engine is inferior to a car in its price range. Furthermore,

certain issues could be independent of the specific engine (and car), and related to the general design of a

combustion engine. The owner of the car could instead evaluate the car based on its physical design compared

to other cars, perhaps focusing on the front, rear, interior, etc. The subjective conclusion could be that the car

is the most beautiful one. The result is two evaluations of the same car with completely different res ults, one

negative, and one positive. For others to use the evaluations to anything meaningful, the premise, e.g. point of

view, and the specific criteria used must be known. The point of view alone is not enough, because different

criteria could be used f or the same point of view. For example, a vaguely formulated criteria such as òHow

durable is it?ó, where it thus means engine or car design depending on the viewpoint, yielding a positive

evaluation for the design of a combustion engine, whereas car desig ns traditionally have a much shorter

lifespan, i.e. less durable ƴ

The general idea is that the evaluation and pattern implementations as a whole must try to express the Gamma

et al. themes and concepts described in section 2.1 on page 13. This makes sense because the individual

patterns by definition must express the themes and concepts regardless of the language used. Determining if

this is indeed the case is not easy. However, if we assume that the individual patterns as described by Gamma et

al. express the desired properties, then their implementation should as well. By trying to implement all

functionality described in the Implementation and Sample Code pattern elements, the pattern implementations

attempt to express the largest possible set of desirable pattern qualities. These pattern elements are chosen

because they explicitly focus on the practical application in context of specific languages and features . The

contained information can rather easily be compared to other languages . The focus is on the practical use of the

programming language to implement the design patterns, not on how the features are constructed internally.

The focus of the evaluation is practical and applied from the perspective of a practising designer and/or

developer. The òGang of Fouró patterns should be used in a realistic, varied, and a practical manner. This

requires an òapplicationó of some size and complexity. In our view, this will produce much more realistic

pattern applications than merely isolating indiv idual pattern implementations in trivial shell ñlike

implementations ; such implementations are plentiful to be found on the Internet. Our evaluation contains no

enervating òDogs and Catsó examples; this is a Masterõs Thesis, not a petting zoo J. As such, the evaluation

merits rather advanced and complex implementations.

EVALUATING SOFTWARE DESIGN PATTERNS ïï EVALUATION a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 70 of 197

5.2. Description
The approach demands that all implementation issues related to pattern functionality described in the

Implementation and Sample Code elements in the òGang of Fouró patterns must be addressed, and if possible,

provide a solution in the language catalyst. It is sufficient to refer to similar solutions in other patterns , but the

features used must in any case be established. As both the implementation and the selection of features us ed

may be determined by the evaluator, the evaluation and its conclusions will be subjective. The detailed

evaluation of the solutions in the given language must be expressed using the Name, Intent, Structure,

Participant, and Implementation elements from the òGang of Fouró pattern format. This includes at least an

UML Class diagram in the Structure element and identification of the pattern participants expressed in the

solutions. While familiar pattern elements are used to describe the evaluation outcome, the contents are much

more detailed and specific compared to the òGang of Fouró pattern descriptions. The comparative evaluation

must identify common traits in the pattern implementations and establish where various features are used and

what their purpose s are. Common traits include both pattern and language behaviour. The format of the

comparative evaluation is not defined since it is completely dependent of the language and features

investigated. It must be defined by the evaluation in question.

5.3. Evaluation Goals
The purpose of the evaluation is to investigate how the use of languages features indigenous to Java 6 can affect

application of the òGang of Fouró patterns, individually and collectively . As the whole concept of pattern

correctness and behaviour is so elusive, the evaluation and its conclusions will be subjective. Hence, the

objective is not to provide a definitive conclusion as this goes against the very idea of design patterns . Instead,

the objective is to provide a realistic, but subjective , evaluation , which may be useful in disclosing how the

òGang of Fouró patterns and Java 6 can cooperate. The goal is not to establish that a given pattern should be

implemented using a set of specific features, but to illustrate that a given set of features may be useful in the

application of the pattern.

In order to perform a reasonably structured evaluation of the entire òGang of Fouró pattern system using Java 6,

we use the defined approach to implement all representative pattern functionality described i n the

Implementation and Sample Code pattern elements (in compliance with subñgoal II from the introduction) . For

each pattern, the outcome of the detailed evaluation will thus be (subñgoal III and IV):

 An introduction to the pattern, describing it using the participants and wording found in [Gamma95]

(described in Name, Intent, and Parti cipants elements);

 A simple description on how the pattern is implemented in this thesis, relating in particular the pattern

participants to implementation entities (Participants and Structure) ;

 A detailed UML Class diagram of the implementation , where pa ttern participants and behaviour are

clearly identifiable (Structure) ; and

 An explanation of how all information in the Implementation and Sample Code elements has been

EVALUATING SOFTWARE DESIGN PATTERNS ïï EVALUATION a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 71 of 197

addressed and possibly solved (Implementation).

The outcome of the comparative evaluat ion will be (subñgoal IV):

 A schematic presentation describing the use of Java 6 features in the pattern implementations ;

 A thorough, comparative analysis on the use of the investigated features, including ex amples, program

listings, and inñpart conclusions and identification of representative high ñlights;

 A comparative analysis between the pattern relationships described by Gamma et al. and relationships

expressed in the evaluation; and

 A casual classification on the level of pattern support Java 6 has based on the evaluation outcome.

The comparative evaluation is presented in chapter 7, while the detailed evaluations are presented in chapter

8. Furthermore, based on all evaluation results, overall evaluation conclusions will be made in chapter 9.

5.3.1. Features

As the last thing before we can conduct the evaluation, we need to selec t the set of features to investigate. A

fixed set is a necessity to keep the evaluation focused , but it must be realistic . Excluding interfaces, for

example, is not an option. The following core features will at least be investigated: type usage (classes,

enumerations, interfaces, abstract classes , and exceptions), implementation and inheritance, generics and

generic methods, inner and anonymous classes (closures), covariant return types, and varargs. Many of these

features have similar constructs in C++, s uch as classes, generics, and covariant return types (for virtual

functions [Stroustrup91, p.647]) , while others do not, such as generic methods and anonymous classes. Many of

these features are given, as writing any form of code in Java would otherwise not be possible. These features

also encompass many of the Eiffel features used in the study by Meyer and Arnout from section 4.3.4 .

As the related work examined in section 4.2 all concluded that runtime dynamic features aid in the application

of the òGang of Fouró patterns, it is obvious to examine the use of Javaõs reflective capabilities in this

evaluation. Reflective usage of class literals, constructors, and methods is examined, as well as dynamic proxies

that allow a type at runtime to implement a given interface using reflective methods for dispatching. The use of

annotations is also examined, especially when used reflectively at runtime. These features cannot be matched

by C++, but Smalltalk possesses several similar features . Numerous òGang of Fouró descriptions illustrate or

discuss pattern functionality relying on runtime features that cannot be directly implemented in C++ , for

example using classes to create objects in Abstract Factory [Gamma95, p.90 -91] and Factory Method [Gamma95,

p.112], or changing the class of an object runtime for State behaviour [Gamma95, p.309].

Javaõs built ñin mechanisms for synchronisation, serialization, and cloning are also examin ed. C++ cannot match

these mechanisms either.

The comparative evaluation will provide short descriptions of the relevant features where deemed necessary.

EVALUATING SOFTWARE DESIGN PATTERNS ïï EVALUATION a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 72 of 197

5.4. Summary
Below, we summarise the most important points related to the defined evaluation approach and its practical use

in this thesis :

 The evaluation approach has a practical and experimental approach and investigates if a given

language catalyst can express all represen tative pattern functionality described in the

Implementation and Sample Code elements. Whether or not specific functionality can be implemented

using the language catalyst must be documented.

 The evaluation approach requires detailed and comparative evalua tions . Detailed evaluations are

more structured and express evaluation outcome using the familiar Intent, Structure, Participant s, and

Implementation elements from the òGang of Fouró format. The comparative evaluation identifies

common traits pertaining to pattern and language behaviour .

 The evaluation goals include a schematic presentation of the pattern í feature usage and an inñ

depth comparative language feature analysis of core language features , reflection , and special

language mechanisms .

 The evaluation goals also include a comparative analysis between the pattern relationships described

by Gamma et al. and relationships expressed in the evaluation and a casual classification on the

level of pattern support in Java 6 based on the evaluation outcome.

The evaluation tries to express the themes and concepts described by Gamma et al . as realistic as possible.

The pattern implementations will be nonñtrivial , and all relate to a few common model classes to convey the

sense of a standñalone òapplicationó. This requires more effort on behalf of the reader. On the other hand, we

will strive to produce better and fully documented program code . The implementation in Java 6 will try to

express òBest Practicesó as described by Bloch [Bloch01].

The objective of the evaluation is to provide a subjective investigation , not a definitive conclusion as this

goes against the very idea of design patterns. The evaluation may help identify how the òGang of Fouró design

patterns and Java 6 can cooperate by illustrating how a given set of features may be useful in the

application of a pattern. Three categories of features will be examined: core language features , reflective

capabilities , and special language mechanisms . Core language features include types , generics , closures ,

covariant return types , and varargs. Reflective capabilities include class literals , methods , dynamic proxies ,

and annotations . Special language mechanisms include synchronisation , serialization , and cloning .

EVALUATING SOFTWARE DESIGN PATTERNS ïï EVALUATION a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 73 of 197

6. Implementation

 LDX #$00

loop: LDA data,X

 STA $0400,X

 INX

 CPX #$0A

 BNE loop

 RTS

 data:.BYTE $03,$36,$34,$20,$34,$05,$16,$05,$12,$21
ïï Gunni Rode

This chapter presents the practical details regarding the pattern implementations . We present the environment

setñup used for the evaluation, including precise Java version and IDE . Since UML cannot describe all Java

features, we explain the UML extensions defined and used during the evaluation to aid the construction of UML

Class diagrams. To simulate a larger òapplicationó than standalone pattern implementations can achieve, we

present the core model classes used directly or indirectly in all pattern implementations. The developed source

code and documentation is available on the thesis website; here, we only pre sent a package overview. Finally,

we describe how the pattern implementations can be executed and tested.

6.1. Software
JDK 1.6.0_01 is used with compiler compliance to version 6. The JDK is available for download at

http://java.sun.com/javase/downloads/index.jsp . JavaDoc is used to document the source code and is bundled

with the JDK. The standard doclet is used with a compliance level to version 6.

Eclipse 3.3 (Europa) is used as the main IDE. It is available at http://www.eclipse.org/downloads . NetBeans

5.5.1 from Sun is used as the secondary IDE since Eclipse utilises its own compiler. To ensure compatibility with

the standard compiler, NetBea ns is used to verify compilation ð the compilers do not behave exactly alike.

Known issues are documented with //ISSUE: . NetBeans is available for download at http://www.netbeans.org .

There is a single compiler erro r in NetBeans in the bridge.SequenceAbstraction<E> class, line 305, but it

does not concern core pattern functionality. In our opinion, it is a compiler bug (well, at least in one of the

compilersé). There are no problems in Eclipse.

A deliberate choice is that no plug ñins for Eclipse or NetBeans are required, not even JUnit . The OS used during

development is Microsoft XP Professional, SP2.

6.2. Modelling
Each pattern implementation is only illustrated with an UML Class diagram, similar to the Cl ass diagram shown in

figure 6.1 on page 76. Standard UML notations are not described here, but UML cannot describe all Java

features, such as final methods, annotations, or genetic bounds. Fortunately, it is extensible. Additional data

types, stereotypes, and attributes are thus defined and used as explained below in table 6.1.

Packages are rarely depicted. If so, it is only to illustrat e a clear separation between patterns and/or classes.

http://java.sun.com/javase/downloads/index.jsp
http://www.eclipse.org/downloads
http://www.netbeans.org/

EVALUATING SOFTWARE DESIGN PATTERNS ïï EVALUATION a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 74 of 197

Types include attribute and operation (constructor and method) information as deemed necessary. Two dots (..)

indicate additional attributes/operations not depicted. Open ñended subñclasses are generally not depicted, but

implied. All Class diagrams use Java types for clarity, pictured with their fully qualified generic name such as

java.util.List<E> . All types defined in this thesis are presented by their simple generic name, such as

Sequence<E> for dk.r ode.thesis.meta.model.Sequence<E> . Inner classes are qualified by their

enclosing class, for example Sequence.State . Parameterised type realisations are depicted with rounded

corners («bind» relations) , which is a deviation from the UML standard. Realisati ons from type parameter E to E

are not illustrated, only when bound to a concrete type such as java.lang.Integer , or to a type parameter

with a different name, e.g. E to T. Bounds on type parameters use Java syntax, like E extends T , E super

S, or even wil dñcards like ? super E . All this is illustrated in figure 6.1 on page 76. Comments are light grey.

Table 6.1 ñ UML stereotypes and properties

Name

Description

«static class» Indicates a static inner class.

«enumeration» Indicates an enumeration, depicted like a class, but with enumeration constants before
attributes.

«final class» Indicates a final class.

{final} A property indicating a final attribute or method.

«exception» Indicates an exception type.

«throws» Indicates a relationship via a thrown exception.

{exception} Indicates a method that might throw an exception as {exception = type }.

«annotation» Indicates a Java annotation type. Depicted like a class, using this stereotype.

«annotated» Indicates a realisation of an annotated type. The non ñdefault fields of the annotation are
bound like type parameters, for example «annotated» name:: value, ..

{synchronised} A property indicating that a given method is synchronised, alternatively {synchronised = lock}.

{unmodifiable} A property indicating that an object is unmodifiable, e.g. read ñonly.

The UML Class diagrams identify the pattern participants in a manner similar to a format suggested by Vlissides,

one of the òGang of Fouró authors. Here, a participant is identified by a dark blue rectangle containing the

participant name in the upper left corner of the type.

6.3. Design
All pattern implementations in this eval uation relate to a few common model classes defined in the

dk.rode.thesis.meta.model package. This is part of the deliberate design choice to simulate larger and

more complex applications than could be achieved by disjoint stand ñalone pattern implementatio ns, but also to

keep the project within reason , time and development wise. Individual implementations can thus be used in

other pattern implementations as well, expressing many of the pattern relations hips described by Gamma et al.

The primary type is the Sequence<E> interface, which represents a sequence that will deliver the next, or

current, value in given sequence on demand, such as for example a Fibonacci sequence or a sequence delivering

EVALUATING SOFTWARE DESIGN PATTERNS ïï EVALUATION a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 75 of 197

the names of the Simpsons family members. Sequences are more than mere iterators; they are value centric and

have a number of interesting properties that makes them useful in an evaluation such as this. Sequences always

have a lower bound, i.e. the initial sequence value, and may have an upper bound, limiting the numbe r of

possible values it can deliver. If a sequence is bounded and deliver consistent values, it will restart when the

upper bound is reached on an invocation of next() , i.e. the same values will be delivered again, in order. The

sequence values of bounded, consistent sequences are thus deterministic: two instances of the same sequence

type initialised identically will return the same sequence values if utilised in the same manner. Sequences may

also deliver unique values until reset or restarted. Sequences can be reset explicitly, which will cause the

sequence to restart if it is consistent. The complete Sequence<E> interface is illustrated in figure 6.1,

including closely related types, but please refer to the JavaDoc for an inñdepth description.

A given pattern implementation will either use or implement sequence functionality, but the Sequence<E>

type is often merely a catalyst to make the implementation and evaluation concrete. The Abstract Factory

implementation, for example, provides a reusable factory that can create any type of product, but the products

created are sequence related. Other implementations are more entangled with sequence functionality. The

implementation of the State pattern is a seq uence implementation delivering prime numbers, where each

concrete state represents internal sequence functionality, such as calculating prime numbers, delivering the

next prime number, restarting the sequence, etc. Usage includes the Adapter implementatio n, which adapts the

Sequence< E> interface to the java. util .Iterator<E> interface via composition, and the Interpreter

implementation, which evaluates expressions that directly or indirectly manipulate sequences.

Arguably, the choice to centre all pattern implementations on a few core model types may seem contrived.

There is no guarantee that òoneñsizeñfitsñalló, especially considering the scope of this thesis. The evaluation

of design patterns from a practical point of view requires a real context to be t ruly educational . Through real,

practical application of a pattern using a given language will the connection between the two become apparent.

Design patterns should be applied only where relevant. A design forcing the use of certain design patterns is not

only contrived, it goes against the very idea of design patterns. An evaluation like this one can only try to

imitate a real context . It has no choice but to implement each pattern within that context as it is the very

purpose of the evaluation. On the other hand, sequence functionality as described above is generic enough to

allow for many different applications of it, which we think the evaluation demonstrates. It helps convey the idea

of an overall òapplicationó. At first glance, a general impression of the design and implementation as whole

could be that it suffers from featuritis , but this is in fact not the case. On the contrary, reusing common

components such as sequences allow individual pattern application to become focused, added only what is

needed while still participating in non ñtrivial overall implementations. Accordingly, several pattern

implementations define sub ñinterfaces of Sequence<E> to express the required functionality , and such types

represent the focus of the given pattern implementa tion. Examples include Composite, Observer, and Visitor

that defines the composite.CompositeSequence<E> , observer.ObservableSequence<O, A, E>, and

visitor.TypeVisitableSequence<E> interfaces , respectively . The actual implementations need only be

concerned with specific pattern functionality as general sequence functionality can be reused or inherited.

EVALUATING SOFTWARE DESIGN PATTERNS ïï EVALUATION a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 76 of 197

Figure 6.1 ñ Primary model classes

6.4. Source Code
Table 6.2 lists the packages containing the developed source code. Approximately 300+ Java files have been

developed, yielding approximately 400+ class files (including inner classes and enumeration constants). All types

are fully documented using JavaDoc, including packa ges. The source code can be downloaded from the thesis

website at http://www.rode.dk/thesis .

http://www.rode.dk/thesis

EVALUATING SOFTWARE DESIGN PATTERNS ïï EVALUATION a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 77 of 197

The reader of this thesis is expected to browse the generated JavaDoc to get a better understanding of the

different imp lementations. The primary implementation of each pattern is implemented in each own aptly

named package, e.g. dk.rode.thesis.abstractfactory for Abstract Factory. A given pattern

implementation may naturally be utilised by other patterns, and additional ap plications of a given pattern may

be present in the source code as well, for example anonymous classes used as onñtheñfly adapters. Several

Meta packages and classes have been developed to aid the individual pattern implementations . An example is

the dk.ro de.thesis.meta.model package as described in the previous section, or the

dk.rode.thesis.meta.reflect package that supplies the core reflection functionality used in different

pattern implementations. They are listed in grey cells in table 6.2 below. Refactoring common code into Meta

classes is also a good design choice in compliance with traditional OO concepts instead of implementing

everything from scratch in each pattern im plementation. It is the contents of each òpattern packageó that are

evaluated in chapter 8, but Meta class functionality will be included if it is essential for the pattern

functionality.

Table 6.2 ñ Source code packages

Package

Description

dk.rode.thesis.abstractfactory Implementation of Abstract Factory.

dk.rode.thesis.adapter Implementation of Adapter.

dk.rode.thesis.bridge Implementation of Bridge.

dk. rode.thesis.builder Implementation of Builder.

dk.rode.thesis.chainofresponsibility Implementation of Chain of Responsibility.

dk.rode.thesis.command Implementation of Command.

dk.rode.thesis.composite Implementation of Composite.

dk.rode.thesis.decora tor Implementation of Decorator.

dk.rode.thesis.facade Implementation of Facade.

dk.rode.thesis.factorymethod Implementation of Factory Method.

dk.rode.thesis.flyweight Implementation of Flyweight.

dk.rode.thesis.interpreter Implementation of Inteprete r.

dk.rode.thesis.iterator Implementation of Iterator.

dk.rode.thesis.mediator Not implemented (but evaluated) .

dk.rode.thesis.memento Implementation of Memento.

dk.rode.thesis.meta

Annotations to identify and classify pattern participants.

dk.rod e.thesis.meta.log

The log framework used.

dk.rode.thesis.meta.model

The core model used as the base for all patterns.

dk.rode.thesis.meta.reflect

Reflection utilities.

dk.rode.thesis.meta.reflect.proxy

Dynamic proxy utilities.

dk.rode.thesis.me ta.test

Defines the test setup.

dk.rode.thesis.meta.util

Various general utilities.

dk.rode.thesis.observer Implementation of Observer.

EVALUATING SOFTWARE DESIGN PATTERNS ïï EVALUATION a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 78 of 197

Table 6.2 ñ Source code packages

Package

Description

dk.rode.thesis.prototype Implementation of Prototype.

dk.rode.thesis.proxy Implementation of Proxy.

dk.rode.thes is.singleton Implementation of Singleton.

dk.rode.thesis.state Implementation of State.

dk.rode.thesis.strategy Implementation of Strategy.

dk.rode.thesis.templatemethod Implementation of Template Method.

dk.rode.thesis.visitor Implementation of Visito r.

Each pattern package contains a doc - files folder containing an UML Class diagram for the implementation.

This ensures that the diagram is included in the generated JavaDoc. The diagrams are included in this thesis as

well, in the relevant evaluation s ections.

In the evaluation, full package names will rarely be used for the developed source code . Package prefix

dk.rode.thesis is always implied if not already included in a given type name. Once a given type or package

has been referenced in a context, e.g. section or paragraph, the remaining package information will be ignored

as well. Example: if the full type name is dk.rode.thesis.composite.CompositeSequence<E> ,

composite.CompositeSequence<E> will suffice, and additional references in the same conte xt will

thereafter simply reference CompositeSequence<E> . Java types are fully qualified, or go by their simple

name when referenced again within the same context, as for example java.util.NavigableMap<K,V> and

NavigableMap<K,V> .

6.5. Testing
Each pattern package includes a Main class that will execute the tests devised to illustrate the developed

pattern functionality, e.g. dk.rode.thesis.abstractfactory.Main . The tests are not meant as a

replacement for JUnit testing, but to illustrate pattern functionality . They can each be run directly, but the

dk.rode.thesis.meta.test package furthermore includes two separate test classes, namely AllTests and

IntegrityTests . The first runs all individual pattern test s in alphabetical order, while the latter perform

integrity tests on all accessible dk.rode.thesis.meta.model.Sequence< E> implementations defined in the

individual pattern implementations. Note that certain test files are required to run the Template Method tests

and that Bridge and Memento, as well as the logger, will write to disk.

To record the outcome of the test s, two types of logs exist: a global log and logs associated with a specific class.

The output is generally verbose as all objects in the evaluation implement meaningful toString()

representations as recommended by Bloch [Bloch01, p.42 -44]. It is possible to control the log level explicitly in

the individual tests by altering the source code, of course, but it is easier to supply a proper boolean value for

the ïlog argument to each test class, indicating whether or not logs associated with individual classes should be

activated or not, e.g. java Main ïlog true . For additional verbose logging, the ïlog.verbose parameter

EVALUATING SOFTWARE DESIGN PATTERNS ïï EVALUATION a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 79 of 197

can be used in a similar fashion. Notice there is no = operator between argument keys and associated values.

The tests are designed so the global log should suffice to convey the intent.

The logs will output to either System.out or to a file. This is determined by the system property

dk.rode.thesis.log . A string value of òfileó, excluding quotation marks , will log to a file in the relative

directory log ; all other values will cause logging to System.out . File logs will append to existing logs. System

properties are supplied with the ïD option during execution, as in j ava ïDdk.rode.thesis.log=file

Main ïlog true . Notice the use of = unlike normal supplied arguments.

6.6. Summary
We have implemented the òGang of Fouró patterns in Java 6, fully documented with JavaDoc . The source

code expresses the òBest Practicesó described by Bloch [Bloch01] whenever possible. Each specific pattern

implementation has a dedicated package , but may be used in other pattern implementations as well. All

implementations basically operate on the same core model classes to simulat e òapplicationó usage.

Additional use of the òGang of Fouró patterns is applied where warranted, for example in Meta classes or as

part of another pattern implementation. Test classes have been developed to illustrate pattern usage .

EVALUATING SOFTWARE DESIGN PATTERNS ïï EVALUATION a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 80 of 197

7. Comparative Evaluation

Program testing can be used to show the presence of bugs,

 but never to show their absence!

ïï Edsger W. Dijkstra

The comparative evaluation provided in this chapter presents an analysis of the pattern implementations that

correlate patterns based on the Java 6 features and mechanisms used in their application. Three categories of

Java 6 features are examined: core language features (types, generics, inheritance, etc .), reflection (class

literals, dynamic proxies, annotations, etc .), and special language mechanisms (synchronisation, serialization,

cloning, etc .). The core language features category primarily encompass static features, the reflection category

primarily runtime features, while special language mechanisms category target s both. Based on the analysis, we

provide observations on how C++ features used to implement core pattern functionality can be implemented in

Java 6. We also present a schematic illustration o f the pattern relationships expressed in the implementations,

comparing them to the relationships described by Gamma et al. We furthermore outline traits of each pattern

implementation in relat ion to pattern implementation level s as described by Norvig [Norvig96, p.7] .

7.1. Language Features
Table 7.1 on page 82 summarises the most important language features and mechanisms applied in the

implementations of the òGang of Fouró patterns. For comparison, pattern application and features utilised in

developed Meta classes are also illustrated . A set of legends is used to describe the feature use in the specific

pattern implementations . Regardless of the legend used, an entry in the table indicates that the feature was

somehow used in the pattern implement ation. The most interesting representative pattern functionality and

feature combinations are highlighted with a dark ñblue background. They are addressed individually in section

9.2 , after the general feature us age has been investigated. The legends are:

 X: the feature is used directly in the pattern implementation. For example, the Singleton pattern uses

inheritance to allow specialisation of singleton types in the singleton package, and the legend used

for the Singleton í Inheritance table entry is thus X.

 P: the feature is used to implement the pattern functionality in another Pattern implementation

because of the close relationships between patterns . For example, anonymous inner classes are used to

define concrete adapter strategies in the Apapter implementation in the adapter package, but the

actual Strategy implementation in the strategy package uses enumerations to define concrete

strategies. Hence, P is used as the legend for the Strategy í Inner classes table entry (P thus refers to

Adapter).

 M: the feature is used in Meta classes essential for the pattern implementation. This is a design issue

related to refactoring performed during the evaluation : had the feature not been used in the Meta

classes, it would have been used directly in the pattern implementation. For example, classñlike

adapters are not implemented directly in the Adapter pattern package, but classñlike adapters

EVALUATING SOFTWARE DESIGN PATTERNS ïï EVALUATION a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 81 of 197

facilitated by dynamic proxies are used extensively in the meta.reflect.proxy.Pr oxyFactory

Meta class. M is therefore used as the legend for the Adapter í Dynamic proxies table entry .

 E: the feature is only used in classes External to the core pattern participants described by Gamma et

al. , but such classes are still implemented in th e specific pattern package. For example, the Command

pattern implementation includes the command.CommandProcessor class, which is not described by

Gamma et al. , but by the òPOSAó Command Processor [Buschmann96, p.277] pattern . As only the

processor implementation use generic methods, and not the actual command.Command<E> types

themselves, the legend is E for the Command í Generic Methods table entry .

 D: the feature is Derived because it depends on the design of other patterns and/or classes. Had the

used classes not utilised the feature, the pattern implementation would (probably) not have used it

either. This is the only legend that counts as a òmaybeó. For example, the Decorator pattern uses

generics because the decorated type is th e generic meta.model.Sequence<E> type. Hence, the table

entry Decorator í Generics is labelled D.

Functionality òinheritedó from other patterns is not included in table 7.1. For example, most pattern

implementations in some form or another operate on the Meta model classes, in particular the Sequence<E>

interface. As this interface extends the prototype. Strict Copyable< T> interface to become a prototype,

most Sequence <E> implementations will use covariant r eturn types to specify the precise type of sequence

from the inherited copy() method. This is registered for the Prototype pattern, but not for other patterns that

use covariant return types for this purpose only.

Sections 7.1.1 ð 7.1.3 discuss the observed use of features in more detail. The program listings all represent

actual program code, albeit truncated as needed. Several listings represent multiple features, but will be

presented in the section deemed most relevant; some cross ñreferencing is thus required. Table 7.1 and the

summaries presented really cannot stand alone. When reading this chapter, the evaluation chapter s for each

pattern will in all likelihood frequently have to be consulted because of the large amount of information that

has to be described: patterns, participants, features, etc. Consulting the JavaDoc is not a bad idea either.

7.1.1. Core Language Features

This section describes the core language features used in the various pattern implementations. Java has many

features in common with C++, lacking some, but also provides others not found in C++.

7.1.1.1. Inheritance, Abstract Classes, and Interfaces

The evaluation d ifferentiates between (abstract) class ñbased inheritance and interface implementation.

Standard use of polymorphism and inheritance is not explicitly addressed, as it is fundamental in any OO design.

Inheritance is included only if it is part of the core p attern functio nality as for example the Template Method

pattern ; this is also true for interfaces and abstract classes. In our experience, abstract classes have a slightly

different purpose in Java compared to similar C++ designs : in Java, abstract classes often implement the basic

traits of an interface for convenience while C++ use (abstract) classes for implementation inheritance.

EVALUATING SOFTWARE DESIGN PATTERNS ïï EVALUATION a!{¢9wΩ{ ¢I9{L{
τ ǘƘŜ άDŀƴƎ ƻŦ CƻǳǊέ ǇŀǘǘŜǊƴǎ ƛƳǇƭŜƳŜƴǘŜŘ ƛƴ WŀǾŀ с

Gunni Rode τ http://www.rode.dk/thesis Page 82 of 197

Table 7.1 ñ Use of Java 6 features in the òGang of Fouró pattern implementa tions

 Pattern

Feature A

b
s
tr

a
c
t

F
a

c
to

ry

A
d

a
p

te
r

B
ri

d
g

e

B
u

ild
e
r

C
h

a
in

 o
f
R

e
s
p

o
n

s
ib

ili
ty

C
o

m
m

a
n

d

C
o

m
p
o

s
it
e

D
e

c
o
ra

to
r

F
a

c
a

d
e

F
a

c
to

ry
 M

e
th

o
d

F
ly

w
e

ig
h
t

In
te

rp
re

te
r

It
e

ra
to

r

M
e

d
ia

to
r

(
n
o

t
im

p
le

m
e

n
te

d
)

M
e
m

e
n
to

O
b

s
e
rv

e
r

P
ro

to
ty

p
e

P
ro

x
y

S
in

g
le

to
n

S
ta

te

S
tr

a
te

g
y

T
e
m

p
la

te
 M

e
th

o
d

V
is

it
o

r

M
e
ta

 c
la

s
s
e
s

Core Language Features

Inheritance

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Abstract classes

X

X

X

X

X

X

X

X

X

X

X

X

Interfaces

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

E

X

X

X

X

Generics

X

D

D

D

X

D

D

D

X

D

D

X

D

X

X

X

E

D

X

D

X

X

Generics (bounded)

X

D

D

D

D

D

X

X

E

X

X

Packages

X

X

X

Nested classes

M

M

X

M

X

X

X

P

X

X

Anonymous classes

X

X

X

X

X

X

P

X

X

Enumerations

X

X

X

X

X

X

X

Exception handling

X

M

X

X

X

M

X

X

X

Generic methods

X

D

E

X

X

D

X

X

X

X

E

X

X

Covariant return

X

X

X

X

X

X

X

X

X

Varargs

X

X

X

X

X

X

X

X

Reflection

Class literals

X

D

X

X

X

X

X

X

X

X

X

X

X

Type literals

X

X

D

D

E

D

X

Constructors

X

X

X

X

X

Methods

X

X

X

X

X

X

Dynamic proxies

M

X

X

X

X

Annotations

X

X

X

X

X

X

X

X

X

X

Special Language Mechanisms

Synchronisation

X

E

X

M

X

X

X

X

X

X

Serialization

X

X

D

D

Cloning

X

X

Class loader

X

X

E

X

Weak references

E

X

X

Meta classe s

X

X

X

X

X

X

X

X

X: used directly in a pattern participant; P: used as part of another pattern implementation; M: used in Meta

classes; D: derived usage; E: used in related, but non ñparticipant, classes; dark ñblue squares: highñlights.

